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1 Introduction

Mechanistic models such as physiologically based pharmacokinetic (PBPK) models have become
important tools in drug development, particularly within the framework of model-informed drug
development (MIDD)!. These models enable predictions of drug—drug interactions (DDlIs),
first-in-human (FIH) dose estimations, etc. In the regulatory aspect, PBPK modeling is commonly used
to support decisions related to DDIs, food effects, and dose extrapolation to special populations. One
challenge in its application is that PBPK models are characterized by a large number of parameters
based on previous studies and literature®. The uncertainties of those parameters and their impact on
the output metrics are difficult to study systematically. A common approach is sensitivity analysis?,
which only investigates how the change of certain parameters affects the relevant output metrics.

Usually, PBPK modeling is performed on modeling platforms, such as Simcyp, GastroPlus, and PK-Sim,
which collectively implement mechanistic models based on previous literature and studies for model
structure and system-related parameters. In 2018, the European Medicines Agency (EMA) published a
Guideline on the reporting of physiologically based pharmacokinetic (PBPK) modelling and
simulation®, which outlines requirements for qualification of PBPK platforms for high-impact
regulatory applications, such as waiving clinical DDI studies or informing dosing decisions in specific
populations (e.g., pediatric subgroups) based on limited or no clinical data. Certara conducted a
Bayesian hierarchical meta analysis (BHMA) and received EMA’s regulatory qualification opinion for
Simcyp in 2025 for predicting CYP-mediated DDIs with low to moderate inhibition®. The BHMA
gualification was based on 220 DDI validation datasets (Certara Drug Interaction Database, formerly
known as the University of Washington database), evaluating the predictive performance of SimCyp
in terms of bias and imprecision of geometric mean ratio (GMR) and between-subject variances (BSV)
of AUC or Cmax. However, the methodology and performance of BHMA for mechanistic models in
drug development have not been systematically assessed and compared with other meta analysis
approaches. It is unclear how its performance and conclusion are impacted by the design
characteristics of the validation datasets, operational features, and model misspecification.

Uncertainty can be understood from two different perspectives. The first concerns the general
predictive performance of a complex model platform (such as SimCyp) within a defined range of
contexts of use. In this case, uncertainty refers to the imprecision in predicting output metrics of the
model platform (e.g., GMR of AUC), which partly reflects variations in data quality and model
development practices among previous PBPK models. BHMA method is an example of this approach,
as it estimates the prediction bias and imprecision based on the comparison between observed and
predicted values of previous DDI studies The second perspective focuses on the uncertainty at the
level of a drug-specific model developed using a model platform, e.g., a pbpk model developed for a
specific drug by setting drug-specific parameters based on available research results. In this context,
the main interest lies in the uncertainty of model input parameters (e.g., drug-specific parameters)
and how these uncertainties affect the prediction results for a specific case. To study the impact of
uncertainty in input parameters, the current most common approach is sensitivity analysis, which has
several drawbacks, including a lack of probabilistic interpretation, neglect of correlation between
parameters, and challenges in directly informing the predictive performance. Probabilistic sensitivity
analysis (PSA) is a method used to assess how the impact of uncertainty in model input parameters
affects the output metrics by assigning probability distributions based on prior knowledge®. Unlike
deterministic sensitivity analysis, PSA offers a probabilistic framework for understanding the influence
of input uncertainty and facilitates more informed decision-making.


https://www.zotero.org/google-docs/?rVtFqL
https://www.zotero.org/google-docs/?zokyd4
https://www.zotero.org/google-docs/?pZVEmn
https://www.zotero.org/google-docs/?wy7dlP
https://www.zotero.org/google-docs/?VQ7068
https://www.zotero.org/google-docs/?RtlxUM

2 Objectives

The objectives of this project (Figure 1) are to explore and/or evaluate the uncertainty analysis
methods or approaches for regulatory evaluations of complex models:

e To explore and evaluate methods for qualifying PBPK platforms in terms of prediction
performance (uncertainty in the output metrics), with a focus on BHMA:
o Toinvestigate the needed design characteristics of validation datasets for BHMA
o Toinvestigate the optimal operational characteristics of BHMA
o To evaluate the performance of BHMA under a series of scenarios, including model
misspecification
o To explore other methods, such as traditional meta-analysis and the frequentist prior
method
e To explore PSA for analyzing the uncertainty in model input parameters
o Toimplement PSA for PBPK modeling with a suggested workflow for its application
o To investigate the impact of selected prior uncertainty distributions on PSA results.
o To explore approaches for combining the two sources of uncertainty (uncertainty in output
metrics and uncertainty in model input parameters)
o To get a better understanding of the different types of uncertainty
o To propose how the investigated approaches can quantitatively inform regulatory
decision-making.
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Figure 1: Overview of the simulation study plan

3 Simulation plan

3.1 BHMA evaluation

The model structure of the BHMA method evaluated here is based on the final model reported in
Qualification Opinion for Simcyp Simulator®. Briefly, the input data for the analysis includes statistics
of previous studies (GMR, geometric BSV, and sample size) and the corresponding predicted values
from a PBPK platform (predicted GMR and predicted BSV) for those studies. The estimated
parameters in the model characterize the uncertainty of the PBPK platform performance in terms of
bias and imprecision in predicting GMR and BSV, respectively. The simulation will include a step of
applying the BHMA results to inform regulatory decision-making for a hypothetical drug, which
compares an uncertainty interval (the 90% prediction interval) calculated from the model with an
assumed safety limit (e.g., 2-fold for GMR in the case of inhibition-mediated DDI). If the uncertainty
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interval falls within the safety limit, the conclusion based on the PBPK platform is that the DDl is likely
to pose no risk. Otherwise, there is a risk of toxicity (overdose) or lack of efficacy (underdose)
depending on the selected context of use.
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Figure 2: Simulation workflow for Bayesian Hierarchical meta analysis

The simulation workflow for evaluating BHMA (Figure 2) will include the following steps:

Simulating datasets: An assumed true BHMA model will be used to simulate: (1) validation
datasets with pre-specified design features (simulated data are composed of observed and
predicted GMR and BSV for each dataset); (2) a dataset for a hypothetical drug (predicted
GMR and predicted BSV) representing a simulation using a PBPK platform. It should be noted
that a distribution of true GMRs is needed for simulating validation datasets, since the BHMA
quantifies the differences between observed and predicted GMRs without information about
the true GMR distribution. The used distribution for true GMRs should meet the EMA
requirement that the validation datasets include inhibitors of different potencies (mild,
moderate, strong)’. A true GMR value will be set for the hypothetical drug, depending on
whether the simulation is to calculate type | error or power. A similar procedure will be used
for generating BSV values from an assumed true distribution. It should be noted that while
the simulation setup will focus on GMR of AUC, the evaluated method can be readily
extended to GMR of Cmax.

BHMA analysis: BHMA analysis is performed on the simulated validation datasets. It should
be noted that the BHMA model used for estimation may differ from the model used for data
simulation (the true model) when evaluating the impact of model misspecification, such as
different prior assumptions.

Conclusion for the hypothetical drug: The resultant BHMA model will be used to create a
90% prediction interval for the hypothetical drug based on the simulated data. The
conclusion regarding the risk of DDI will then be obtained by comparing the prediction
interval to the pre-set safety limit.

Simulation summary: The simulation study will be conducted with at least 1,000 simulation
runs. Based on this, the percentage of cases concluding no DDI risk (i.e., 90% prediction
intervals within the safety limit) will be calculated, which corresponds to either the type |
error or power, depending on the design scenario ( true GMR value for the hypothetical
drug).


https://www.zotero.org/google-docs/?MAG042

3.1.2 UseCasel

Use Case 1 will focus on quantifying the impact of competitive, inhibition-mediated drug interactions
on investigational compounds. For example, the investigational drug is a victim of CYP3A4, and the
predicted drug interaction is caused by a co-administered drug that is a mild or moderate inhibitor of
CYP3A4. This use case will be the main case for evaluating the BHMA approach and investigating
operational characteristics. The safety limit will be set as a 2-fold increase in GMR, i.e., a clinically
relevant DDI is associated with a risk of toxicity if the GMR (with vs. without the inhibitor) is larger
than 2. It should be noted that we only focus on the upper limit of the GMR since the
inhibition-mediated DDI is expected to have a higher GMR.

3.1.2.1 Design characteristics of validation datasets

Different numbers of validation datasets will be evaluated in the simulation study, with a planned
range from 4 to 200. If encountering identifiability/converge issues, the dataset number will be
adjusted. In addition, the subject number of each dataset will be another design characteristic to
investigate, which will be between 5 and 30, a common range for a DDI study. The simulation study
will cover two scenarios to investigate the minimal size for validation datasets: (1) all datasets have
the same subject number, and (2) they have different subject numbers.

3.1.2.2 Operational characteristics

In the final model for the Simcyp qualification®, the priors used in the BHMA are standard normal
distributions for bias and truncated Cauchy distributions for imprecision (i.e., variances). We will
investigate other prior settings, such as distributions with different spreads and locations.

The method’s robustness against a violation of the assumption of constant bias and imprecision
regardless of DDI magnitude will be investigated. To achieve this, in a simulation study, we will use a
BHMA model with varying magnitudes of bias and/or imprecision for different GMR:s (i.e., different
DDI potencies) and apply a BHMA with constant bias/imprecision as an estimation model.

3.1.2.3 Evaluation scenarios
For evaluating type | error, the true GMR for the hypothetical drug will be set at 2. For evaluating
power, the true GMR will be set at 0.8, 1, and 1.5, respectively.

In addition, the BHMA approach will be evaluated under different PBPK platform performance:

e High bias, high imprecision

e Low bias, high imprecision

e High bias, low imprecision

® Low bias, low imprecision

The high and low bias may be set at 50% and 5%, respectively. The high and low imprecision may be
set at 100% and 20%, respectively.

3.1.3 Use Case 2

In Use Case 2, PBPK platforms are used to support dose selection for the pediatric population (e.g., a
certain age group) based on simulated exposure in the case of limited or no clinical data. The
simulation study of this case is to evaluate BHMA performance for exposure matching compared to
adults based on GMR of AUC with both lower and upper boundaries, which may be set to 0.6 and
1.67, respectively (modified based on the FDA reference’). The GMR between pediatric and adult
populations under selected dose needs to be within 0.6-1.67 to claim comparable exposure.


https://www.zotero.org/google-docs/?Wyc5pK
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Under this newly defined safety zone, the BHMA method will be evaluated across various scenarios,
similar to those in Use Case 1 (Section 3.1.2), including:

e Different dataset sizes;
e Different prior settings;
e Different PBPK platform performance levels (combinations of high/low bias and imprecision).

3.1.4 Exploring other meta-analysis methods

In addition to BHMA, we will explore alternative meta-analysis approaches, such as traditional
meta-analysis (where bias and imprecision are treated as fixed values) and the frequentist prior
approach®® (which incorporates prior information as a penalty term for the maximized likelihood
function to account for discrepancy between the prior and the available data). We will first attempt to
implement these methods, and if successful, they will be included in the simulation study and
compared with BHMA.

3.2 Investigation of PSA for uncertainty in model input parameters
Our obijective is to implement PSA to quantify the impact of uncertainty in model input parameters,
which include two steps:

Step 1: Construction of Parameter Uncertainty Distributions
In practice, uncertainty in model input parameters may arise from expert opinion, preclinical and
clinical data, and/or literature reports. In this study, we will consider the following elements of prior
information: the most probable value (mode), the uncertainty variance (or standard error), and
plausible parameter bounds. Using these inputs, we will construct parameter uncertainty
distributions with potential options such as (truncated) normal, (truncated) t distribution,
logit-normal distribution, uniform distribution, and beta distributions®.

Step 2: Uncertainty Propagation
Once prior distributions for parameter uncertainty are established, propagation of this parameter
uncertainty will be performed, using, e.g., random sampling (Monte Carlo simulation) to generate a
set of parameter values. For each sampled parameter set, the corresponding output metric (GMR of
AUC) will be obtained through the PBPK model. The result of PSA is an uncertainty distribution for the
model output.

The investigation will focus on Use Case 1, i.e., applying PBPK models to predict CYP competitive
inhibition-mediated DDI. Our implementation of PSA will focus on a single parameter. If results are
promising and time allows, the analysis may be extended to two parameters, with and without
correlation.

We will also investigate how the choice of prior uncertainty distribution affects PSA outcomes. Briefly,
resulting output distributions will be compared across different prior distributions constructed using
the same information (i.e., mode and variance). Furthermore, we will explore effective ways to
visualize, summarize, and interpret PSA results to better support regulatory decision-making. With all
these efforts, we aim to propose a workflow for implementing probabilistic sensitivity analysis to
characterize parameter uncertainty in complex models and inform regulatory decision-making in a
transparent and quantitative manner.


https://www.zotero.org/google-docs/?GpLHM2
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3.3 Exploring approaches to combine uncertainties from different sources

In Section 3.1, the bias and uncertainty analyzed through meta-analysis reflect the general
performance of a PBPK platform under a specific context of use. The imprecision or uncertainty in the
output metrics partly reflects variations in data quality and model development practices among
previous PBPK models. In contrast, Section 3.2 focuses on uncertainty related to the input parameter
uncertainty of a specific PBPK model, largely in drug-specific parameters in the case of DDIs. When
making regulatory decisions based on complex modeling, it is important to consider the uncertainties
associated with both the model platform and the specific model implementation. The key research
qguestion for this section is whether it is possible to combine these two sources of uncertainty to
better inform regulatory decision-making.

This work will be exploratory in nature. We will explore potential approaches using a simulated case
study (Use Case 1: PBPK model for DDI prediction). A potential simulated case study is illustrated in
Figure 3. Briefly, one or more datasets of clinical DDI studies will be simulated based on published
models (either PBPK or population PK models). Using these simulated datasets, key parameters (e.g.,
fraction metabolized by a specific CYP, fm) will be estimated with uncertainty (such as SE). A selected
UQ method (e.g., PSA) may be carried out based on the resultant updated PBPK model with the
uncertainty on the estimated parameter(s) to obtain predicted output metrics (such as GMR of AUC)
with uncertainty and corresponding BSV. In parallel, a BHMA model may be estimated using a
collection of DDI datasets across different drugs under a certain context of use (e.g., the BHMA model
reported in the SImCYP qualification study).

Comparing the uncertainties obtained from these two paths will provide insights into the relative
magnitudes. Furthermore, different strategies may be explored to integrate these two types of
uncertainties—those arising from the PBPK model input parameters and those captured by the
BHMA model—to support regulatory decision-making. One potential approach is to incorporate the
propagated uncertainty directly into the BHMA framework.
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Figure 3: a potential simulated case study to explore approaches of combining uncertainties of
different sources

4 Software

The Simulations will be performed in R™, making use of the SimDesign package® to initialize random
number generators, save random seeds, dispatch the computations, and collect the results. Functions
to generate the data, apply the selected methods, and aggregate the results will be written by the
consortium. The different scenarios will be implemented in functions that call the data-generating
functions from other packages with the respective parameters or their own code.


https://www.zotero.org/google-docs/?X3605P
https://www.zotero.org/google-docs/?eQw7Bc

Implementations of the data analysis methods applied to the generated data will be used from
different packages where they are already implemented. For example, the R package Rstan'® may be
used for Bayesian analysis. NONMEM may be used to implement the frequentist prior method.
Wrapper functions compatible with the SimDesign framework will be provided. All R functions and
documentation will be published in an R package as a GitHub repository; the code to reproduce the
simulation study, tables, and graphs from the report will be published as one or more vignettes to the
R package. Code used to generate data from other scenarios will also be made available.

In the simulated case study (Section 3.3) and possibly implementing sensitivity analysis (Section 3.2),
the PBPK model used may be selected from the Open Systems Pharmacology PBPK model library*.
PK-sim, an open access software, will likely be used for PBPK modeling.

5 Discussion
Choice of methods to explore

The methods to explore proposed in this simulation plan were carefully selected based on an overall
assessment of several factors.

e The proposed methods were identified as suitable for evaluating uncertainty of mechanistic
models for model-informed drug development during the literature review performed by the
consortium (Deliverable 2).

® The proposed methods were selected based on the relevance of the method for regulatory
decision-making according to the EMA PBPK guideline®.

® Practical considerations were deemed necessary considering the available resources for the
research project (including project timelines).

In addition to the above, the proposed methods were also considered aligned with the use cases and
planned evaluation of operational characteristics as outlined in the preliminary study plan written at
the beginning of the project (Deliverable 1).

Two distinct types of methods were identified in the literature review including methods mainly
concerning uncertainty on model output (e.g. uncertainty in predicted GMR of AUC) and methods
mainly concerning uncertainty on model input parameters. Thus, we propose to focus on one method
mainly concerning uncertainty in model output and to explore one method mainly concerning
uncertainty in model input.

The qualification of PBPK platforms is required for applying PBPK models in high-impact regulatory
decisions according to the EMA PBPK guideline®, which suggests comparisons of predicted output vs
observed data (i.e. validation datasets). This emphasizes the regulatory relevance of exploring a
method which mainly concerns uncertainty on model output. BHMA was identified as a suitable
method according to the literature review. BHMA was used in a recent important regulatory
precedent where the SimCYP simulator got a positive EMA qualification®. Furthermore, the EFPIA
Pharma industry PBPK expert team shared a position statement at an EMA workshop on mechanistic
models which commended the use of BHMA for PKPK platform qualification. Taken together, there is
a high regulatory relevance of exploring and evaluating BHMA. Therefore, our simulation plan focuses
on evaluating the BHMA method and investigating its operational characteristics (Section 3.1).
Notably, BHMA does not directly involve PBPK models and could potentially be extended to other
complex modeling frameworks.


https://www.zotero.org/google-docs/?hXYGQU
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Several UQ methods identified in the literature review (Deliverable 2) concentrate on uncertainties in
model input parameters. These methods are more relevant for assessing the quality of individual
PBPK models rather than qualifying modeling platforms per se. The EMA PBPK guideline* describes
the role of sensitivity analyses when developing and applying mechanistic models. While such
methods are also important, further exploratory work is needed to implement them and to develop
strategies for interpreting their results in a regulatory context. This is the focus of Section 3.2. PSA
was identified as a suitable method in the literature review®*®, mainly concerning uncertainty on
model input parameters. We propose to explore PSA due to its relative simplicity, ease of
implementation, and interpretability.

Several other promising UQ methods—such as Bayesian calibration®® and global sensitivity”*®

analysis—also hold potential for application to complex models including PBPK, QSP, and machine
learning models in drug development and evaluation. These methods merit investigation in future
projects. Importantly, beyond technical implementation, it is essential to understand how the results
from these UQ methods can be linked to and inform regulatory decision-making.

Terminology considerations

In this simulation plan, type | error and statistical power are used as evaluation metrics for BHMA. It
should be noted that these metrics are borrowed from the concepts of frequentist hypothesis testing
to assess the chances of making correct or incorrect decisions. However, since BHMA is a Bayesian
approach, it does not involve predefined significance levels. Therefore, we do not expect type | error
to align with conventional thresholds (e.g., 5%) used in frequentist frameworks.
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