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1​ Introduction 

Mechanistic models such as physiologically based pharmacokinetic (PBPK) models have become 

important tools in drug development, particularly within the framework of model-informed drug 

development (MIDD)1. These models enable predictions of drug–drug interactions (DDIs), 

first-in-human (FIH) dose estimations, etc. In the regulatory aspect, PBPK modeling is commonly used 

to support decisions related to DDIs, food effects, and dose extrapolation to special populations. One 

challenge in its application is that PBPK models are characterized by a large number of parameters 

based on previous studies and literature2. The uncertainties of those parameters and their impact on 

the output metrics are difficult to study systematically. A common approach is sensitivity analysis3, 

which only investigates how the change of certain parameters affects the relevant output metrics. 

Usually, PBPK modeling is performed on modeling platforms, such as Simcyp, GastroPlus, and PK-Sim, 

which collectively implement mechanistic models based on previous literature and studies for model 

structure and system-related parameters. In 2018, the European Medicines Agency (EMA) published a 

Guideline on the reporting of physiologically based pharmacokinetic (PBPK) modelling and 

simulation4, which outlines requirements for qualification of PBPK platforms for high-impact 

regulatory applications, such as waiving clinical DDI studies or informing dosing decisions in specific 

populations (e.g., pediatric subgroups) based on limited or no clinical data. Certara conducted a 

Bayesian hierarchical meta analysis (BHMA) and received EMA’s regulatory qualification opinion for 

Simcyp in 2025 for predicting CYP-mediated DDIs with low to moderate inhibition5. The BHMA 

qualification was based on 220 DDI validation datasets (Certara Drug Interaction Database, formerly 

known as the University of Washington database), evaluating the predictive performance of SimCyp 

in terms of bias and imprecision of geometric mean ratio (GMR) and between-subject variances (BSV) 

of AUC or Cmax. However, the methodology and performance of BHMA for mechanistic models in 

drug development have not been systematically assessed and compared with other meta analysis 

approaches. It is unclear how its performance and conclusion are impacted by the design 

characteristics of the validation datasets, operational features, and model misspecification. 

Uncertainty can be understood from two different perspectives. The first concerns the general 

predictive performance of a complex model platform (such as SimCyp) within a defined range of 

contexts of use. In this case, uncertainty refers to the imprecision in predicting output metrics of the 

model platform (e.g., GMR of AUC), which partly reflects variations in data quality and model 

development practices among previous PBPK models. BHMA method is an example of this approach, 

as it estimates the prediction bias and imprecision based on the comparison between observed and 

predicted values of previous DDI studies  The second perspective focuses on the uncertainty at the 

level of a drug-specific model developed using a model platform, e.g., a pbpk model developed for a 

specific drug by setting drug-specific parameters based on available research results. In this context, 

the main interest lies in the uncertainty of model input parameters (e.g., drug-specific parameters) 

and how these uncertainties affect the prediction results for a specific case. To study the impact of 

uncertainty in input parameters, the current most common approach is sensitivity analysis, which has 

several drawbacks, including a lack of probabilistic interpretation, neglect of correlation between 

parameters, and challenges in directly informing the predictive performance. Probabilistic sensitivity 

analysis (PSA) is a method used to assess how the impact of uncertainty in model input parameters 

affects the output metrics by assigning probability distributions based on prior knowledge6. Unlike 

deterministic sensitivity analysis, PSA offers a probabilistic framework for understanding the influence 

of input uncertainty and facilitates more informed decision-making. 
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2​ Objectives 

The objectives of this project (Figure 1) are to explore and/or evaluate the uncertainty analysis 

methods or approaches for regulatory evaluations of complex models: 

●​ To explore and evaluate methods for qualifying PBPK platforms in terms of prediction 

performance (uncertainty in the output metrics), with a focus on BHMA: 

o​ To investigate the needed design characteristics of validation datasets for BHMA 

o​ To investigate the optimal operational characteristics of BHMA 

o​ To evaluate the performance of BHMA under a series of scenarios, including model 

misspecification 

o​ To explore other methods, such as traditional meta-analysis and the frequentist prior 

method 

●​ To explore PSA for analyzing the uncertainty in model input parameters 

o​ To implement PSA for PBPK modeling with a suggested workflow for its application 

o​ To investigate the impact of selected prior uncertainty distributions on PSA results. 

●​ To explore approaches for combining the two sources of uncertainty (uncertainty in output 

metrics and uncertainty in model input parameters) 

o​ To get a better understanding of the different types of uncertainty 

o​ To propose how the investigated approaches can quantitatively inform regulatory 

decision-making. 

 

Figure 1: Overview of the simulation study plan 

3​ Simulation plan 

3.1​ BHMA evaluation 
The model structure of the BHMA method evaluated here is based on the final model reported in 

Qualification Opinion for Simcyp Simulator5. Briefly, the input data for the analysis includes statistics 

of previous studies (GMR, geometric BSV, and sample size) and the corresponding predicted values 

from a PBPK platform (predicted GMR and predicted BSV) for those studies. The estimated 

parameters in the model characterize  the uncertainty of the PBPK platform performance in terms of 

bias and imprecision in predicting GMR and BSV, respectively. The simulation will include a step of 

applying the BHMA results to inform regulatory decision-making for a hypothetical drug, which 

compares an uncertainty interval (the 90% prediction interval) calculated from the model with an 

assumed safety limit (e.g., 2-fold for GMR in the case of inhibition-mediated DDI). If the uncertainty 
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interval falls within the safety limit, the conclusion based on the PBPK platform is that the DDI is likely 

to pose no risk. Otherwise, there is a risk of toxicity (overdose) or lack of efficacy (underdose) 

depending on the selected context of use.  

3.1.1​ Simulation Workflow 

 

Figure 2: Simulation workflow for Bayesian Hierarchical meta analysis 

 

The simulation workflow for evaluating BHMA (Figure 2) will include the following steps: 

●​ Simulating datasets: An assumed true BHMA model will be used to simulate: (1) validation 

datasets with pre-specified design features (simulated data are composed of observed and 

predicted GMR and BSV for each dataset); (2) a dataset for a hypothetical drug (predicted 

GMR and predicted BSV) representing a simulation using a PBPK platform. It should be noted 

that a distribution of true GMRs is needed for simulating validation datasets, since the BHMA 

quantifies the differences between observed and predicted GMRs without information about 

the true GMR distribution. The used distribution for true GMRs should meet the EMA 

requirement that the validation datasets include inhibitors of different potencies (mild, 

moderate, strong)4. A true GMR value will be set for the hypothetical drug, depending on 

whether the simulation is to calculate type I error or power. A similar procedure will be used 

for generating BSV values from an assumed true distribution. It should be noted that while 

the simulation setup will focus on GMR of AUC, the evaluated method can be readily 

extended to GMR of Cmax.  

●​ BHMA analysis: BHMA analysis is performed on the simulated validation datasets. It should 

be noted that the BHMA model used for estimation may differ from the model used for data 

simulation (the true model) when evaluating the impact of model misspecification, such as 

different prior assumptions. 

●​ Conclusion for the hypothetical drug: The resultant BHMA model will be used to create a 

90% prediction interval for the hypothetical drug based on the simulated data. The 

conclusion regarding the risk of DDI will then be obtained by comparing the prediction 

interval to the pre-set safety limit. 

●​ Simulation summary: The simulation study will be conducted with at least 1,000 simulation 

runs. Based on this, the percentage of cases concluding no DDI risk (i.e., 90% prediction 

intervals within the safety limit) will be calculated, which corresponds to either the type I 

error or power, depending on the design scenario ( true GMR value for the hypothetical 

drug). 
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3.1.2​ Use Case 1 
Use Case 1 will focus on quantifying the impact of competitive, inhibition-mediated drug interactions 

on investigational compounds. For example, the investigational drug is a victim of CYP3A4, and the 

predicted drug interaction is caused by a co-administered drug that is a mild or moderate inhibitor of 

CYP3A4. This use case will be the main case for evaluating the BHMA approach and investigating 

operational characteristics. The safety limit will be set as a 2-fold increase in  GMR, i.e., a clinically 

relevant DDI is associated with a risk of toxicity if the GMR (with vs. without the inhibitor) is larger 

than 2. It should be noted that we only focus on the upper limit of the GMR since the 

inhibition-mediated DDI is expected to have a higher GMR.  

3.1.2.1​ Design characteristics of validation datasets 

Different numbers of validation datasets will be evaluated in the simulation study, with a planned 

range from 4 to 200. If encountering identifiability/converge issues, the dataset number will be 

adjusted. In addition, the subject number of each dataset will be another design characteristic to 

investigate, which will be between 5 and 30, a common range for a DDI study. The simulation study 

will cover two scenarios to investigate the minimal size for validation datasets: (1) all datasets have 

the same subject number, and (2) they have different subject numbers. 

3.1.2.2​  Operational characteristics 

In the final model for the Simcyp qualification5, the priors used in the BHMA are standard normal 

distributions for bias and truncated Cauchy distributions for imprecision (i.e., variances). We will  

investigate other prior settings, such as distributions with different spreads and locations.  

The method’s robustness against a violation of the assumption of constant bias and imprecision 

regardless of DDI magnitude will be investigated. To achieve this, in a simulation study, we will use a 

BHMA model with varying magnitudes of bias and/or imprecision for different GMRs (i.e., different 

DDI potencies) and apply a BHMA with constant bias/imprecision as an estimation model. 

3.1.2.3​ Evaluation scenarios 

For evaluating type I error, the true GMR for the hypothetical drug will be set at 2. For evaluating 

power, the true GMR will be set at 0.8, 1, and 1.5, respectively. 

In addition, the BHMA approach will be evaluated under different PBPK platform performance: 

●​ High bias, high imprecision 

●​ Low bias, high imprecision 

●​ High bias, low imprecision 

●​ Low bias, low imprecision 

 

The high and low bias may be set at 50% and 5%, respectively. The high and low imprecision may be 

set at 100% and 20%, respectively. 

3.1.3​ Use Case 2 
In Use Case 2, PBPK platforms are used to support dose selection for the pediatric population (e.g., a 

certain age group) based on simulated exposure in the case of limited or no clinical data. The 

simulation study of this case is to evaluate BHMA performance for exposure matching compared to 

adults based on GMR of AUC with both lower and upper boundaries, which may be set to 0.6 and 

1.67, respectively (modified based on the FDA reference7). The GMR between pediatric and adult 

populations under selected dose needs to be within 0.6-1.67 to claim comparable exposure. 
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Under this newly defined safety zone, the BHMA method will be evaluated across various scenarios, 

similar to those in Use Case 1 (Section 3.1.2), including: 

●​ Different dataset sizes; 

●​ Different prior settings; 

●​ Different PBPK platform performance levels (combinations of high/low bias and imprecision). 

 

3.1.4​ Exploring other meta-analysis methods 
In addition to BHMA, we will explore alternative meta-analysis approaches, such as traditional 

meta-analysis (where bias and imprecision are treated as fixed values) and the frequentist prior 

approach8,9 (which incorporates prior information as a penalty term for the maximized likelihood 

function to account for discrepancy between the prior and the available data). We will first attempt to 

implement these methods, and if successful, they will be included in the simulation study and 

compared with BHMA. 

3.2​ Investigation of PSA for uncertainty in model input parameters 
Our objective is to implement PSA to quantify the impact of uncertainty in model input parameters, 

which include two steps: 

Step 1: Construction of Parameter Uncertainty Distributions 

In practice, uncertainty in model input parameters may arise from expert opinion, preclinical and 

clinical data, and/or literature reports. In this study, we will consider the following elements of prior 

information: the most probable value (mode), the uncertainty variance (or standard error), and 

plausible parameter bounds. Using these inputs, we will construct parameter uncertainty 

distributions with potential options such as (truncated) normal, (truncated) t distribution, 

logit-normal distribution, uniform distribution, and beta distributions6.  

Step 2: Uncertainty Propagation 

Once prior distributions for parameter uncertainty are established, propagation of this parameter 

uncertainty will be performed, using, e.g., random sampling (Monte Carlo simulation) to generate a 

set of parameter values. For each sampled parameter set, the corresponding output metric (GMR of 

AUC) will be obtained through the PBPK model. The result of PSA is an uncertainty distribution for the 

model output. 

The investigation will focus on Use Case 1, i.e., applying PBPK models to predict CYP competitive 

inhibition-mediated DDI. Our implementation of PSA will focus on a single parameter. If results are 

promising and time allows, the analysis may be extended to two parameters, with and without 

correlation. 

We will also investigate how the choice of prior uncertainty distribution affects PSA outcomes. Briefly, 

resulting output distributions will be compared across different prior distributions constructed using 

the same information (i.e., mode and variance). Furthermore, we will explore effective ways to 

visualize, summarize, and interpret PSA results to better support regulatory decision-making. With all 

these efforts, we aim to propose a workflow for implementing probabilistic sensitivity analysis to 

characterize parameter uncertainty in complex models and inform regulatory decision-making in a 

transparent and quantitative manner.  
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3.3​ Exploring approaches to combine uncertainties from different sources 
In Section 3.1, the bias and uncertainty analyzed through meta-analysis reflect the general 

performance of a PBPK platform under a specific context of use. The imprecision or uncertainty in the 

output metrics partly reflects variations in data quality and model development practices among 

previous PBPK models. In contrast, Section 3.2 focuses on uncertainty related to the input parameter 

uncertainty of a specific PBPK model, largely in drug-specific parameters in the case of DDIs. When 

making regulatory decisions based on complex modeling, it is important to consider the uncertainties 

associated with both the model platform and the specific model implementation. The key research 

question for this section is whether it is possible to combine these two sources of uncertainty to 

better inform regulatory decision-making. 

This work will be exploratory in nature. We will explore potential approaches using a simulated case 

study (Use Case 1: PBPK model for DDI prediction). A potential simulated case study is illustrated in 

Figure 3. Briefly, one or more datasets of clinical DDI studies will be simulated based on published 

models (either PBPK or population PK models). Using these simulated datasets, key parameters (e.g., 

fraction metabolized by a specific CYP, fm) will be estimated with uncertainty (such as SE). A selected 

UQ method (e.g., PSA) may be carried out based on the resultant updated PBPK model with the 

uncertainty on the estimated parameter(s) to obtain predicted output metrics (such as GMR of AUC) 

with uncertainty and corresponding BSV. In parallel, a BHMA model may be estimated using a 

collection of DDI datasets across different drugs under a certain context of use (e.g., the BHMA model 

reported in the SimCYP qualification study).  

Comparing the uncertainties obtained from these two paths will provide insights into the relative 

magnitudes. Furthermore, different strategies may be explored to integrate these two types of 

uncertainties—those arising from the PBPK model input parameters and those captured by the 

BHMA model—to support regulatory decision-making. One potential approach is to incorporate the 

propagated uncertainty directly into the BHMA framework. 

 

Figure 3: a potential simulated case study to explore approaches of combining uncertainties of 
different sources 

4​ Software 

The Simulations will be performed in R11, making use of the SimDesign package12 to initialize random 

number generators, save random seeds, dispatch the computations, and collect the results. Functions 

to generate the data, apply the selected methods, and aggregate the results will be written by the 

consortium. The different scenarios will be implemented in functions that call the data-generating 

functions from other packages with the respective parameters or their own code.  
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Implementations of the data analysis methods applied to the generated data will be used from 

different packages where they are already implemented. For example, the R package Rstan13 may be 

used for Bayesian analysis. NONMEM may be used to implement the frequentist prior method. 

Wrapper functions compatible with the SimDesign framework will be provided. All R functions and 

documentation will be published in an R package as a GitHub repository; the code to reproduce the 

simulation study, tables, and graphs from the report will be published as one or more vignettes to the 

R package. Code used to generate data from other scenarios will also be made available. 

In the simulated case study (Section 3.3) and possibly implementing sensitivity analysis (Section 3.2), 

the PBPK model used  may be selected from the Open Systems Pharmacology PBPK model library14. 

PK-sim, an open access software, will likely be used for PBPK modeling.  

5​ Discussion  

Choice of methods to explore 

The methods to explore proposed in this simulation plan were carefully selected based on an overall 

assessment of several factors. 

●​ The proposed methods were identified as suitable for evaluating uncertainty of mechanistic 

models for model-informed drug development during the literature review performed by the 

consortium (Deliverable 2). 

●​ The proposed methods were selected based on the relevance of the method for regulatory 

decision-making according to the EMA PBPK guideline4. 

●​ Practical considerations were deemed necessary considering the available resources for the 

research project (including project timelines). 

In addition to the above, the proposed methods were also considered aligned with the use cases and 

planned evaluation of operational characteristics as outlined in the preliminary study plan written at 

the beginning of the project (Deliverable 1). 

Two distinct types of methods were identified in the literature review including methods mainly 

concerning uncertainty on model output (e.g. uncertainty in predicted GMR of AUC) and methods 

mainly concerning uncertainty on model input parameters. Thus, we propose to focus on one method 

mainly concerning uncertainty in model output and to explore one method mainly concerning 

uncertainty in model input. 

The qualification of PBPK platforms is required for applying PBPK models in high-impact regulatory 

decisions according to the EMA PBPK guideline4, which suggests comparisons of predicted output vs 

observed data (i.e. validation datasets). This emphasizes the regulatory relevance of exploring a 

method which mainly concerns uncertainty on model output. BHMA was identified as a suitable 

method according to the literature review. BHMA was used in a recent important regulatory 

precedent where the SimCYP simulator got a positive EMA qualification5.  Furthermore, the EFPIA 

Pharma industry PBPK expert team shared a position statement at an EMA workshop on mechanistic 

models which commended the use of BHMA for PKPK platform qualification. Taken together, there is 

a high regulatory relevance of exploring and evaluating BHMA. Therefore, our simulation plan focuses 

on evaluating the BHMA method and investigating its operational characteristics (Section 3.1). 

Notably, BHMA does not directly involve PBPK models and could potentially be extended to other 

complex modeling frameworks. 
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Several UQ methods identified in the literature review (Deliverable 2) concentrate on uncertainties in 

model input parameters. These methods are more relevant for assessing the quality of individual 

PBPK models rather than qualifying modeling platforms per se. The EMA PBPK guideline4 describes 

the role of sensitivity analyses when developing and applying mechanistic models. While such 

methods are also important, further exploratory work is needed to implement them and to develop 

strategies for interpreting their results in a regulatory context. This is the focus of Section 3.2. PSA 

was identified as a suitable method in the literature review6,15, mainly concerning uncertainty on 

model input parameters.  We propose to explore PSA due to its relative simplicity, ease of 

implementation, and interpretability.  

Several other promising UQ methods—such as Bayesian calibration16 and global sensitivity17,18 

analysis—also hold potential for application to complex models including PBPK, QSP, and machine 

learning models in drug development and evaluation. These methods merit investigation in future 

projects. Importantly, beyond technical implementation, it is essential to understand how the results 

from these UQ methods can be linked to and inform regulatory decision-making. 

Terminology considerations 

In this simulation plan, type I error and statistical power are used as evaluation metrics for BHMA. It 

should be noted that these metrics are borrowed from the concepts of frequentist hypothesis testing 

to assess the chances of making correct or incorrect decisions. However, since BHMA is a Bayesian 

approach, it does not involve predefined significance levels. Therefore, we do not expect type I error 

to align with conventional thresholds (e.g., 5%) used in frequentist frameworks.  
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