Report on the literature review: uncertainty quantification for complex models

Authors (alphabetical order): Xiaomei Chen¹, Tim Friede², Andrew Hooker¹, Zhe Huang¹, Martin Posch³, David Robinson², Yevgen Ryeznik¹, Lucia Schneider², Paula Starke²

Affiliations:

- 1. Uppsala University, Department of Pharmacy, Uppsala, Sweden
- 2. University Medical Center Göttingen, Department of Medical Statistics, Göttingen, Germany
- 3. Medical University of Vienna, Austria

Supplementary material: literature review sup1 summary.xlsx

Content:

Content:	1
1 Background and objective	2
2 Methods	4
2.1 Literature review search	4
2.1.1 Searching in databases	4
2.1.2 Screening abstracts	6
2.1.3 Extract information from full texts	6
2.2 Quantitative and qualitative analysis	7
3 Results	8
3.1 Literature review search	8
3.2 Quantitative and qualitative analysis	12
3.3 Classification of uncertainty quantification methods	17
3.4 List of highly relevant papers for further work	20
4 Conclusion and discussion	21
5 Funding sources/sponsors	22
6 Reference	22
Appendix 1	27

1 Background and objective

Model-informed drug development (MIDD) plays a crucial role not only in drug development[1] but also in drug evaluation by regulatory agencies[2,3]. A key component of MIDD is the use of complex mechanistic models, such as Physiologically Based Pharmacokinetic (PBPK)[4] and Quantitative Systems Pharmacology (QSP)[5] models. Unlike statistical models, which are based on data, PBPK and QSP models are built on an understanding of physiology, drug characteristics, and pharmacology. These models are typically intricate, with numerous parameters derived from previous preclinical and clinical studies.

By leveraging prior knowledge of the system and the drugs being studied, PBPK and QSP models are often used for extrapolations. This includes determining the first-in-human dose based on preclinical data, predicting pharmacokinetic and pharmacodynamic (PKPD) profiles in special situations (such as drug-drug interactions) and special populations (such as pediatric patients), aiding in dose adjustment decisions, and optimizing clinical trial designs[6,7].

Despite the theoretical and predictive appeal of complex mechanistic models, their practical applications are hindered by several limitations. One major issue is the lack of specific information on mechanisms and physiological parameter values, especially from special populations during model building[8]. This gap, along with other weaknesses, reduces the credibility of these models.

For example, current approaches for PBPK and QSP models do not adequately assess uncertainty due to their complexity and the sources of set parameters. Most physiological parameters are fixed at average values from literature, without accounting for parameter uncertainty and variability. Drug-specific parameters, derived from observed data (in vitro, in vivo, and/or clinical), are also fixed without considering potential bias and uncertainty from experimental setups and *in vitro-in vivo* extrapolation (IVIVE)[4,8]. Furthermore, when parameters are estimated based on clinical data, the uncertainty of those parameters is usually not evaluated or reported.

Additionally, the adage "all models are wrong" applies here; no matter how complex, these models cannot fully represent biological systems, contributing further to model uncertainty. This impairs the predictability of complex models. Discrepancies between simulated data and observed data are typically described using concise metrics, such as the average (absolute) fold prediction error[9]. Models are sometimes validated by comparing the prediction error to an arbitrary value (e.g., 2-fold or 3-fold), which may not provide a clear understanding of the pharmacological significance of these differences. Moreover, fold-change metrics can oversimplify the diversity in a model's predictive performance and lack the sensitivity needed to detect variations among specific subgroups.

Although sensitivity analysis is regularly conducted, as suggested by regulatory agencies, to evaluate the robustness of PBPK models[10,11], the output is often fold-based uncertainty and/or graphs, focusing on a small portion of key and/or uncertain parameters. Validation data are not directly involved in sensitivity analyses. The above challenges create difficulties for regulators to assess a model's predictive capabilities and its applicability beyond the data used for its development. Further research is needed to develop better methods for characterizing and reporting uncertainty in a model's predictive performance.

In recent years, machine learning (ML) has garnered significant interest in drug discovery and development due to its ability to address several critical challenges in the field[12,13]. During the drug discovery stage, ML algorithms can identify new drug targets, predict potential adverse effects, and optimize drug candidates. In preclinical studies, ML can predict the pharmacokinetic (PK), pharmacodynamic (PD), and safety profiles of new drug candidates. Across different phases of clinical trials, ML approaches can enhance trial management and treatment decisions. For example, ML can predict dose-limiting toxicities[14] and improve dose-finding in phase I studies[15] making more efficient recruitment of trial participants and reducing the required sample size of the phase II studies[16], and build reliable disease progression models by combining ML and pharmacometrics approaches in phase III clinical trials[17].

Similar to mechanism-based models, uncertainty quantification is essential for advancing the reliability and robustness of ML models. However, a widely adopted framework for uncertainty quantification in machine learning is still lacking[18], underscoring the need for further research and development in this area.

Uncertainty quantification (UQ) provides a computational framework for quantifying uncertainties in both inputs and outputs, thereby facilitating predictions with quantified and reduced uncertainties[19]. Typically, UQ involves one or more mathematical models for a quantity of interest, with some uncertainty regarding the correct form of the model or models. These uncertainties are often treated probabilistically[20]. An appropriate UQ method is essential for regulatory decision making which may depend on type I error and power related to hypothesis tests or on confidence intervals / credible intervals related to parameter estimation or prediction. UQ becomes more important when using complicated analysis methods and/or complex models. For example, in previous work, members of our consortium (UU) have demonstrated that in some model-integrated methods based on population pharmacometric models, UQ methods based on information matrices showed inflated type I error, while type I error could be controlled with a more appropriate UQ method (sampling importance resampling)[21–23].

Another group in our consortium (UMG) contributed to the literature on another UQ method, namely Bayesian random-effects meta-analysis, in particular in the setting of a few studies[24]. Shrinkage estimation in these models can be applied to implement dynamic borrowing across different types of studies[25], regions[26] or dose regimens (combinations of doses and frequencies)[27]. More generally, Bayesian hierarchical models are a flexible framework for evidence synthesis, borrowing of information and prediction, as well as a powerful UQ method, especially for applications where variability and uncertainty arise from multiple sources. That is specifically of interest for this project, which focuses on complex mechanistic models, the parameters of which are from literature and data from multiple studies.

Other UQ methods are also of interest for application in complex models used in drug development and evaluation. These include Bayesian calibration[28], model discrepancy analysis[29], and surrogate modeling (e.g., based on polynomial chaos expansion)[30,31]. Various approaches of sensitivity analysis can also be further explored, separately or in combination: (1) probabilistic sensitivity analysis[32] assesses uncertainty by assuming input parameter uncertainty distributions, in contrast to the current practice in PBPK modeling, which often uses fixed values (i.e., deterministic sensitivity analysis). (2) Global sensitivity analysis[33,34] considers parametric correlations to provide a more comprehensive assessment of model sensitivity. An alternative approach involves using prior information, such as the frequentist prior, to link preclinical and clinical data through PBPK models. This method, employed by Mats Karlsson[35,36] (a member of our consortium), estimates model parameters while assessing uncertainty.

In summary, there is a significant lack of well-established and widely recognized methods for assessing the uncertainty of complex models in drug development and evaluation. Recent advancements in uncertainty quantification offer an opportunity to enhance the methodologies for evaluating and validating PBPK, QSP, and ML models, thereby increasing the credibility of these modeling tools for regulatory decision-making.

Against this backdrop, the present literature review seeks to provide a comprehensive overview of the current state of the art in uncertainty quantification for complex models applied in drug development and regulatory evaluation, including physiologically based pharmacokinetic models, quantitative systems pharmacology models, and machine learning approaches. Specifically, it summarizes existing knowledge on the properties, interpretability, and applicability of UQ methods within these contexts, thereby establishing a robust foundation for selecting candidate methods for further investigation in this project.

The twofold primary objectives of this review are:

- 1. To identify and characterize existing UQ methods used in PBPK, QSP, and ML models within the framework of regulatory decision-making in drug development.
- To explore UQ methodologies from broader disciplines, including statistics, toxicology, engineering, and analytical chemistry, that may be adaptable to these complex modeling approaches.

2 Methods

2.1 Literature review search

We conducted the literature review in three main steps: searching in databases, screening abstracts, and extracting information from the full texts.

2.1.1 Searching in databases

We conducted a comprehensive literature search in three electronic databases to reduce the risk of missing relevant articles and to minimize the risk of bias in the results: PubMed was chosen to cover literature in biomedicine, health, and related fields such as life sciences,

behavioral sciences, chemical sciences, and bioengineering. MathSciNet was used to cover publications in mathematics and statistics. Scopus was selected as an interdisciplinary database, expanding the scope of the first two with a broad range of research topics. Based on the preliminary plan, we iteratively refined our search terms to balance the number of retrieved papers while ensuring sufficient coverage of UQ methods. As an adaptive design, the search approach was validated against four UQ-related papers referenced in the background of this report [28–30,32]. If the search results failed to capture most of these papers or yielded an excessive number of irrelevant ones, the terms were revised and the search was repeated iteratively.

The search strategy of Objective 1 was to combine two areas:

 Uncertainty quantification/analysis: centered on the core term "uncertainty" and including specific methods such as Bayesian hierarchical meta-regression, Bayesian calibration, model discrepancy analysis, surrogate modeling, probabilistic sensitivity analysis, uncertainty propagation, interval analysis, fuzzy computations, and frequentist approaches.

2. Complex models:

- a. PBPK & QSP related models: physiologically based pharmacokinetic (PBPK) modeling, physiologically based biopharmaceutics modeling (PBBM), quantitative systems pharmacology (QSP), PBPK models used in toxicology, quantitative systems toxicology (QST)
- b. machine learning (ML) models

The two areas were combined using the logical operator "AND". A fuzzy search strategy was applied to capture spelling variations. For example, the search term "uncertaint*" was used for capturing all the variations of "uncertainty". For ML models, given the large number of potential papers dealing with ML and the scope of the current project, the searching strategy was adjusted to focus on "drug development" to provide a reasonable number of papers for the next step.

To address Objective 2 (broadening the scope of the systematic review), we relaxed the constraint requiring the combination of the two categories with "AND" for the database that contained most methodological information, namely MathSciNet. Instead, specific method terms were treated in the same way as complex model terms in MathSciNet. This means that papers containing either specific methods (e.g., Bayesian calibration) or complex model terms were captured, enabling broader exploration of UQ methodology papers without substantially inflating the total number of retrieved records. This adjustment was appropriate given that MathSciNet primarily indexes mathematical and statistical publications, with comparitively fewer publications using the defined search terms. We applied the same strategy in Scopus, which increased the number of hits from 277 (See Table 3) to 859. Given this substantial increase, and considering time and resource limitations, we implemented the expanded search scope only in MathSciNet, as handling such a large number of papers was not feasible.

The finalized search terms are shown in 3.1 <u>Literature review search</u>.

2.1.2 Screening abstracts

The search results from the first step were imported into the review software <u>Rayyan</u> for screening. Records were screened according to predefined inclusion and exclusion criteria. The screening process was conducted independently by two reviewers, and any disagreements regarding the eligibility of a paper were resolved by a third reviewer, who made the final decision.

The predefined inclusion and exclusion criteria are listed as follows:

Table 1: Inclusion and Exclusion Criteria for Selection of publications

Inclusion Criteria	Exclusion Criteria
Research and methodological publications explicitly discussing UQ methods.	Publications are not aligned with the primary objective of evaluating UQ methods in modeling contexts.
Studies presenting case applications of UQ methods in PBPK, QSP, or ML models, including clinical trials, simulation studies, and modelling analyses.	Studies employing UQ methods solely for parameter estimation or sensitivity analysis without a focus on UQ methodology (e.g., local sensitivity analysis).
Publications involving alternative modeling frameworks where UQ methods may be potentially applicable to the current research scope.	Articles lacking full-text availability or access.

2.1.3 Extract information from full texts

The full-text extraction process began with the retrieval of full-text articles using **Zotero**. Publications without accessible full texts were excluded, and duplicates were removed. To support efficient data extraction within the constraints of time and resources, the Al-powered tool **Elicit** was employed. Designed for systematic reviews, **Elicit** automates labor-intensive research tasks such as summarizing papers, extracting data from full texts, and synthesizing findings. During extraction, it presents the retrieved information accompanied by explanations and highlights of the corresponding text from the source, which enables reviewers to efficiently verify the accuracy of the extraction. A set of ten representative papers was used to define and train the extraction instructions, which were subsequently applied across the entire collection of selected studies. The instructions for the columns of text extraction are listed in Appendix 1.

All extracted information was then manually verified to ensure accuracy. This was done by clicking on the hyperlinks supplied by **Elicit** to verify the extracted information. In cases where **Elicit** produced incorrect or incomplete outputs, the information was corrected based on the publications manually. Finally, the verified information was organized and summarized in a

spreadsheet to support further analysis. Through our manual verification, we found that **Elicit** offers notable advantages, particularly in saving time by automating the extraction process and reducing manual effort in verifying the accuracy of extraction (**Elicit** hyperlinks the extracted information to locations in the manuscripts where that information was found). It also shows strong accuracy in extracting some information from both full texts and tables, such as type of model, software used, software availability and so on. However, its accuracy is limited when categorizing content or summarizing information that is not explicitly stated in the text, for example, identifying the type of paper (application or method) or the stage of drug development was challenging for **Elicit**.

The search results were organized with the following 20 columns:

Table 2: Columns for Text Extraction

ID	Related to drug development: Yes/No
Title	Purpose of the model
Authors	Type of product
Source/Journal	Therapeutic area
Year	Stage of drug development
DOI/Full text link	Simulation for evaluating UQ methods: Yes/No
Inclusion: Yes/No, if no, put reason in comments	Software availability: Open source/Commercial/Open source+Commercial/No
Type of paper: Methodology/Application/Review	Code availability: Open source/Commercial platform with given parameters/upon request to the authors/No
Type of model: PBPK/QSP/ML/Others	Software used
UQ methods	Comments

2.2 Quantitative and qualitative analysis

Characteristics of articles and proposed methods were described by using descriptive analyses such as line charts and bar charts. The collected categorical variables were summarized by providing absolute and relative frequencies. To enable an overview of the uncertainty quantification methods, model names as they were proposed by the authors were classified into broader classes of models. The main characteristics of these suggested

categories are introduced, and examples for the categories were provided. All statistical analyses were performed in R (version 4.5.1).

3 Results

3.1 Literature review search

A comprehensive database search retrieved 764 distinct publications related to PBPK and QSP models as of July 3rd, 2025, and 75 publications related to ML models as of July 10th, 2025. The search captured three of the four pre-specified quality control (QC) papers. The remaining paper, *Good practices for quantitative bias analysis* [32], was not captured because the abstract contained only the term "uncertainty" and none of the other specific search terms listed in 2.1.1 Searching in the databases. We tested an expanded search scope by adding the term "bias analysis," but this substantially increased the number of records (n=3254) that focused on bias more broadly and for fields with less relevance for the purpose of this review (such as epidemiologic research in general) rather than uncertainty quantification approaches suitable for mechanistic models. It is worth noting that it was not a strict requirement for the search to capture all QC papers, given the constraints of time and resources. Therefore, we kept the original search terms and incorporated this paper during the full-text extraction stage.

The finalized search terms and the corresponding stepwise results are summarized as follows:

Table 3: Final Search Terms for Literature Review on PBPK & QSP related models

Model type	Database	Sear ch	Search terms	Results				
PBPK &	Scopus	No.	TITLE-ABS-KEY (uncertaint* W/3 (quantif* OR	269,705				
QSP related models	Ссориз		propagat* OR bayesian OR frequentist OR stochastic OR "surrogate models" OR metamodels OR distribution* OR interval OR sensitivity OR discrepanc* OR fuzzy OR analysis))	209,703				
	2 TITLE-ABS-KEY (pbpk OR pharmacokinetic* O pharmacometric* OR "systems pharmacology" (OR "quantitative systems toxicology" OR qst OF "physiologically based biopharmaceutics" OR pt							
		3	#1 AND #2	277				
	MathSciNet via	1	TI uncertaint* OR AB uncertaint*	36,787				
	EBSCOhost	2	PO "92C45" 92C45 (1991–now) Kinetics in biochemical problems (pharmacokinetics, enzyme kinetics, etc.)	1499				
		3	TI pbpk OR"quantitative systems toxicology" OR qst OR pharmacokinetic* OR pharmacometric* OR "systems pharmacology" OR qsp OR "physiologically based biopharmaceutics" OR pbbm OR "bayesian calibration" OR "probabilistic sensitivity" OR "model discrepanc*" OR "surrogate based" OR AB pbpk OR pharmacodynamic* OR pharmacokinetic* OR pharmacometric* OR "systems pharmacology" OR qsp OR "physiologically based biopharmaceutics" OR pbbm OR "bayesian calibration" OR "probabilistic sensitivity" OR "model discrepanc*" OR "surrogate based" OR"quantitative systems toxicology" OR qst	954				
		4	#2 OR #3					
		5	#1 AND #4	100				
	PubMed	1	"Uncertainty"[Mesh]					
		2	"quantify uncertainty"[tiab:~3] OR "quantifying uncertainty"[tiab:~3] OR "quantification uncertainty"[tiab:~3] OR "propagation uncertainty"[tiab:~3] OR "bayesian uncertainty"[tiab:~3] OR "frequentist uncertainty"[tiab:~3] OR "stochastic uncertainty"[tiab:~3] OR "surrogate models uncertainty"[tiab:~3] OR "metamodels uncertainty"[tiab:~3] OR "distribution uncertainty"[tiab:~3] OR "interval uncertainty"[tiab:~3] OR "quantify uncertainties"[tiab:~3] OR "quantifying uncertainties"[tiab:~3] OR "quantification uncertainties"[tiab:~3] OR "propagation uncertainties"[tiab:~3] OR "bayesian uncertainties"[tiab:~3] OR "frequentist uncertainties"[tiab:~3] OR "stochastic uncertainties"[tiab:~3] OR "surrogate models uncertainties"[tiab:~3] OR "metamodels uncertainties"[tiab:~3] OR "distribution uncertainties"[tiab:~3] OR "distribution uncertainties"[tiab:~3] OR "interval					

	uncertainties"[tiab:~3] OR "discrepancy uncertainty"[tiab:~3] OR "fuzzy uncertainty"[tiab:~3] OR "sensitivity uncertainty"[tiab:~3] OR "discrepancy uncertainties"[tiab:~3] OR "fuzzy uncertainties"[tiab:~3] OR "sensitivity uncertainties"[tiab:~3] OR "uncertainty analysis" [tiab:~3] OR "uncertainties analysis" [tiab:~3]	
3	#1 OR #2	
4	"Pharmacokinetics"[Mesh] OR "pharmacokinetics" [Subheading] OR "Toxicology" [Mesh]	
5	pbpk[tiab] OR pharmacokinetic*[tiab] OR pharmacometric*[tiab] OR "systems pharmacology"[tiab] OR qsp[tiab] OR "quantitative systems toxicology" [tiab] OR qst [tiab] OR "physiologically based biopharmaceutics" [tiab] OR pbbm[tiab]	
6	#4 OR #5	
7	#3 AND #6	534

Table 4: Final Search Terms for Literature Review on ML models

Model type	Database	Search No.	Search terms	Results			
ML models	Scopus	1	TITLE-ABS-KEY (uncertaint* W/3 (learn* OR machine* OR deep* OR bayesian OR xgboost OR "random forest" OR predict* OR "model prediction" OR "neural network" OR "Gaussian process"))	41,683			
		2	TITLE-ABS-KEY ("drug development")	138,385			
		3	#1 AND #2	73			
	MathSciNet via EBSCOhost	1	pc:68T *68T: Artificial Intelligence	33,340			
		2	ti:uncertaint* OR ab:uncertaint*	14,816			
		3	#1 AND #2	362			
		4	ti:(learn* OR machine* OR deep* OR bayesian OR xgboost OR "random forest" OR predict* OR	97,953			

г				
			"model	
			prediction" OR	
			"neural network"	
			OR "Gaussian	
			process")	
		5	#2 AND #4	1083
		6	#1 AND #2 AND	56
			#4	
		7	ti:"drug	77
			development" OR	
			ab:"drug	
			development"	
		8	#6 AND #7	1
	PubMed	1	"Uncertainty"[Me	
			sh]	
		2	"machine	344,394
			learning"[tiab:~3]	
			OR "deep	
			learning"[tiab:~3]	
			OR "bayesian	
			regression"[tiab:~	
			3] OR "xgboost	
			regression"[tiab:~	
			3] OR "random	
			forest"[tiab:~3]	
			OR "model	
			prediction"[tiab:~	
			3] OR "neural	
			network"[tiab:~3]	
			OR "Gaussian	
			process"[tiab:~3]	
		3	#1 AND #2	949
		4	"drug	52,536
			development"[tia	
			b]	
		5	#3 AND #4	2

Following the abstract screening stage, 481 publications (57.3%) were excluded due to irrelevance to the review objectives. After incorporating the remaining QC paper into the database, a total of 358 abstracts were subjected to full-text retrieval. Of these, 65 were excluded, resulting in 293 publications included in the final analysis (see PRISMA flow diagram **Figure 1**).

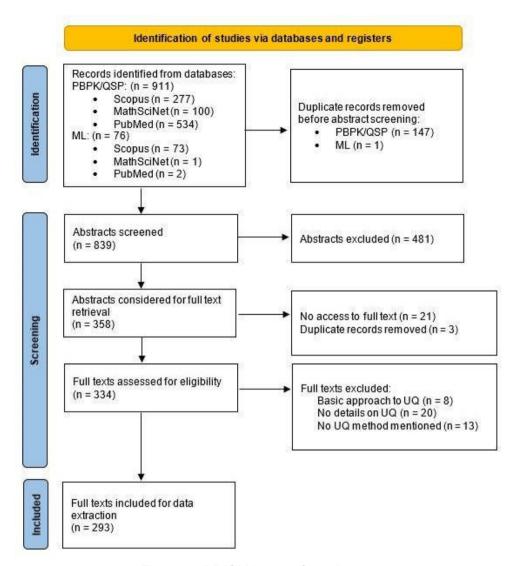


Figure 1: PRISMA 2020 flow diagram

The most frequent reasons for exclusion during the full-text review were: (i) the absence of any mention of UQ methods, (ii) insufficient methodological details regarding UQ approaches. Additional exclusions were made for articles focusing on topics outside the scope of this review and for studies describing well-established techniques for complex models, such as local sensitivity analysis, uncertainty factor analysis, and confidence interval approach.

3.2 Quantitative and qualitative analysis

A table with all extraction information is provided as **Supplementary material**.

75 % of the articles in our review were published in 2010 or later. Only 18 articles were published before 2000. **Figure 2** shows the publication years of included articles by type of paper. The number of publications is summarized and plotted with one datapoint for each 5-year period. The year 2025 is not included because the year is not yet over and it starts a new 5-year period that would be incomplete and thus misleading in the plot.

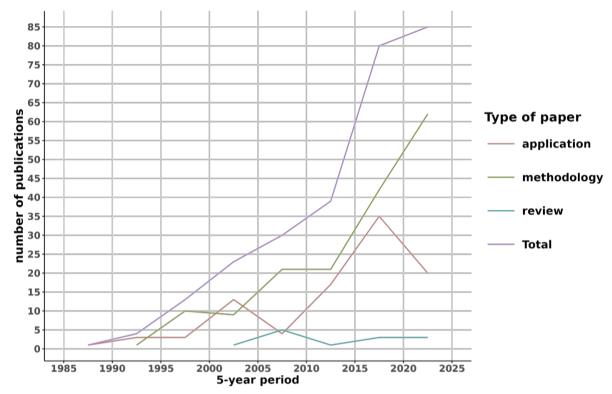


Figure 2: Time trend of the number of publications by type of paper

The largest proportion of included articles (53%, n=198) are methodological, 31% (n=103) are applications, and 4% (n=14) are reviews.

Figure 3 shows which types of complex models were addressed. Physiologically based pharmacokinetic models (PBPK) represented the largest group of complex models that were applied or investigated in the included articles (28%, n=95). Quantitative systems pharmacology (QSP) models were only explicitly studied in 3 articles. 11% of the articles addressed uncertainty quantification for machine learning models. The remaining articles (48%, n=159) are either purely theoretical without a focus on a specific complex model, categorized as "Others". Figure 4 breaks down the models within the "Others" category. This includes "less complex" pharmacological models (n=31),pharmacokinetic/pharmacodynamic (PK/PD) models. It also covers models related to the field of medicine (n=42), mathematical methods and theory (n = 42), environmental modeling and risk assessment (n=19), human risk and safety assessment (n= 17), engineering-related models (n = 5), and epidemiology models (n = 3).

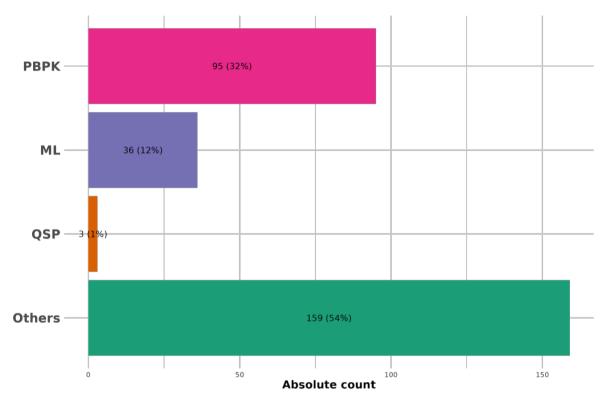


Figure 3: Absolute number of included articles by type of complex model

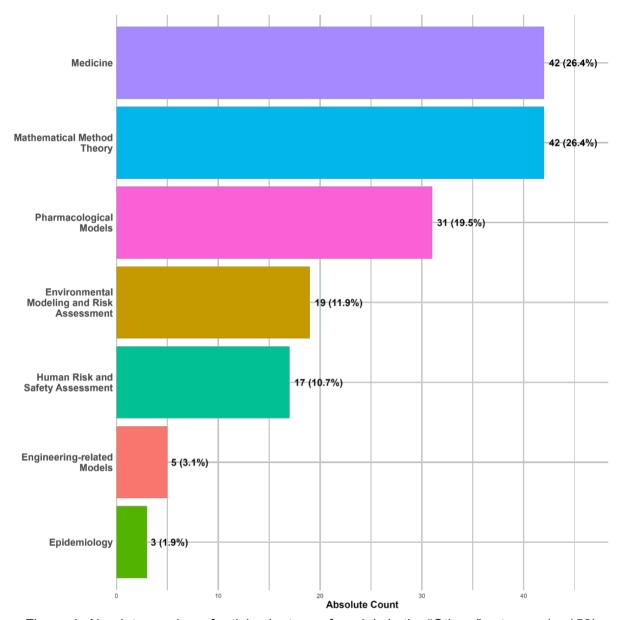


Figure 4: Absolute number of articles by type of models in the "Others" category (n=159)

In total, 129 articles conducted some simulation on uncertainty quantification methods which corresponds to 44% of articles. 36% of articles used and specified an open source software to implement uncertainty quantification methods, mostly R and Python. 22% (n=29) of articles used commercial platforms, e.g. Matlab, WinBUGS, @RISK (Palisade Corporation), NONNEM or Oracle Crystal Ball. A large proportion of articles did not specify the software that was used (41%, n=53). Code or scripts are available for only 25% (n=32) of articles with simulations. Most of those are open access (19%, n=24) (see **Figure 5**). Some articles provide code only upon request to the authors (n=6) or in the form of parameter information that can be used as inputs for commercial platforms (n=2). Examples for software used for specific uncertainty quantification methods can be found in the column "software used" in the extraction table that is provided as **Supplementary material** (filter by columns `UQ method rough` or `UQ method - fine`).

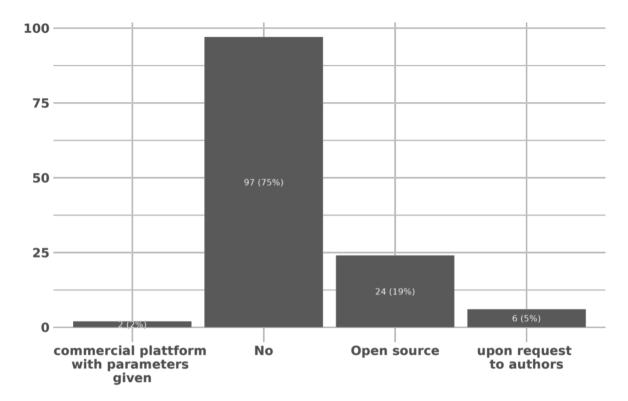


Figure 5: Absolute number of articles with a simulation study by type of code availability

About half of both methodological papers and applications were related to the development, repurposing or maintenance of a drug or vaccine for clinical use (see **Figure 6**). Drug development was defined to include drug discovery, chemistry and pharmacology, nonclinical safety testing, dose finding, manufacturing, clinical trials, and regulatory submissions. 73% of the applications related to drug development focused on a specific therapeutic area compared to 53% of methodological articles. Details and examples for therapeutic areas, types of products, stage of drug development and purpose of the pharmacokinetic model can be found by filtering the extraction table that is provided as **Supplementary material** (`Drug therapy development`="Yes").

Among the 14 reviews identified in the search, 8 focused on drug development. The most frequently mentioned UQ methods in these reviews were Bayesian approaches, particularly Bayesian hierarchical meta-regression and Bayesian Markov chain Monte Carlo (MCMC) analysis. Other methods noted included Monte Carlo simulation, uncertainty propagation, and fuzzy computations.

The remaining 6 reviews, which were outside the context of drug development, highlighted a more diverse set of UQ methods. These included Bayesian approaches such as Bayesian hierarchical meta-regression and Bayesian calibration, as well as parametric bootstrapping, Monte Carlo simulation, MCMC simulation, Gaussian process surrogate modeling, uncertainty propagation, uncertainty factors, sensitivity analysis, and likelihood-based methods.

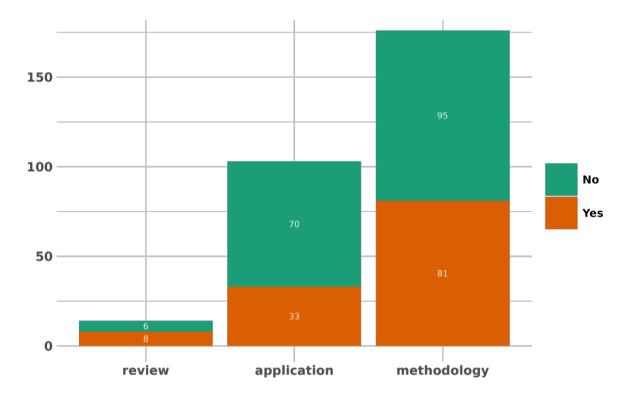


Figure 6: Absolute number of articles related to drug development by type of paper

3.3 Classification of uncertainty quantification methods

In the literature, there is currently no comprehensive summary and classification of all uncertainty quantification (UQ) methods, and as a result, the screening process began without the guidance of such a framework. During the screening, specific names of methods as well as more general keywords like sensitivity analysis and uncertainty propagation were extracted. Subsequently, these identified methods were organized into broader categories to provide a more structured analysis of the results. This classification resulted in six categories: Global Sensitivity Analysis, Uncertainty Propagation, Bayesian Methods, Basic Frequentist Approaches, Stochastic and Uncertain Differential Equations and other methods. Of these groups, the first four were further subdivided. A list of all included papers, along with the extracted keywords and methods related to uncertainty quantification can be found in the **Supplementary material**.

Global Sensitivity Analysis can be defined as "[...] the study of how the uncertainty in the outcome of a model can be distributed to different sources of uncertainty in the input model"[37]. It assesses the contribution of inputs to output variability and can identify non-linear interactions. Examples include the Morris method[39], Sobol indices[38], polynomial chaos expansion[41] and the Fourier Amplitude Sensitivity Test[40]. To address the varying degree of theoretical complexity in the approaches, three subcategories were introduced: simulation-based methods, e.g. Morris method, advanced analytical methods, e.g. polynomial chaos expansion[41] and other methods that were not detailed enough to be placed into one of the mentioned categories above. The degree of complexity lies on a continuous scale and can therefore only roughly be approximated by this categorization.

Uncertainty Propagation involves predicting how uncertainties in input variables propagate through models to affect outputs. While global sensitivity analysis and uncertainty propagation methods are closely connected, the former is more concerned with uncertainty in the input variables, whereas the latter focuses more on the outcome variables. Techniques in this category can further be divided into probabilistic and non-probabilistic approaches. Prominent examples for the latter are fuzzy computation and interval analysis[42]. Probabilistic approaches often require a simulation method e.g. Monte Carlo simulation[43] to assess the propagation of uncertainty either simply through the original model or in a more complex approach through a surrogate model[44], e.g. Kriging method[45]. Other probabilistic approaches that did not fit into the two categories "Basic simulation" or "Surrogate model" or were not detailed enough to classify, were grouped into a third subcategory for probabilistic approaches, resulting in four subcategories for uncertainty propagation in total.

Bayesian methods describe uncertainty in parameter estimates by incorporating prior knowledge along with the likelihood of observed data to update the probability distribution of the parameters. They encompass a wide variety of different methods and therefore are further subdivided into Bayesian hierarchical modelling, Bayesian calibration, and Bayesian machine learning methods e.g. using Monte Carlo dropout to assess the epistemic uncertainty of a neural network[46]. Again, a category was introduced for other Bayesian methods. Assessing the resulting posterior distribution relies mostly on simulation-based methods, e.g. Markov Chain Monte Carlo sampling[47].

Frequentist methods in the context of uncertainty quantification can range from basic techniques like standard errors to more complex techniques involving confidence intervals and hypothesis tests for model parameters. To further differentiate the methods in the context of uncertainty quantification three subgroups were introduced, likelihood-based methods, resampling and other frequentist methods. Likelihood-based methods help to characterize the uncertainty associated with model parameters through the likelihood function, e.g. log-likelihood profiling relying on the likelihood ratio test[48]. Resampling involves repeatedly drawing samples from a dataset to assess the stability and reliability of statistical estimates. Resampling techniques such as bootstrapping and the jackknife method allow for the estimation of parameter uncertainty without relying heavily on parametric models[49,50].

The methods in the category uncertain/stochastic differential equations (UDE/SDE) arise from replacing the model equations of a pharmacometric model, which are typically ordinary differential equations, with uncertain differential equations or stochastic differential equations. The use of UDEs and SDEs allows for direct modeling and assessment of noises on model parameters, e.g. measurement error, intra- or interindividual variability. While stochastic pharmacokinetic models are driven by the Brownian motion, uncertain pharmacokinetic models are driven by the Liu process[51], which was designed under the framework of uncertainty theory as a stationary independent increment process whose increments are normal uncertain variables rather than random variables[52].

Methods that could not be placed into one of the categories above based on the extracted information were combined in a separate group, later referred to as "Other". If a paper applies or compares multiple different methods, all the corresponding categories were assigned, resulting in an analysis of the absolute number of mentions per category rather than the proportional distribution. As illustrated in **Figure 7**, the Bayesian methods were used most

often followed by simulation-based techniques in global sensitivity analysis and uncertainty propagation. Methods that involve a more complex theoretical setup like uncertain differential equations or surrogate modeling are applied less frequently.

It is important to note that even for a specific method, the categories of this framework are not fully disjoint. The classification is also dependent on the thoroughness of the description of the uncertainty quantification within a paper, which can vary significantly and therefore can lead to ambiguities which result in a considerable use of the "Other" category.

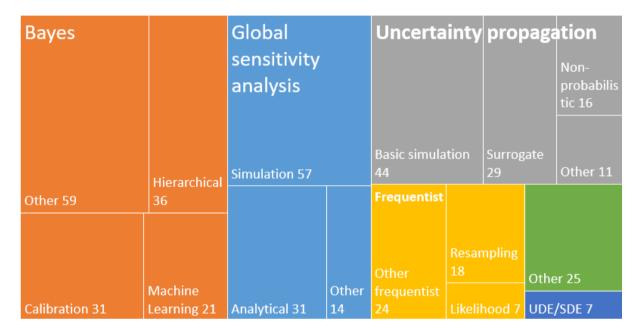


Figure 7: Classification of uncertainty quantification methods with absolute number of occurrences in all included articles

As illustrated in **Figure 8**, simulation-based global sensitivity analysis and uncertainty propagation were the most frequently applied or studied types of uncertainty quantification methods in current articles that apply to physiologically based pharmacokinetic models (PBPK) or quantitative systems pharmacology (QSP) models. Bayesian and frequentist methods were applied less often in this field than overall (compare **Figure 7**).

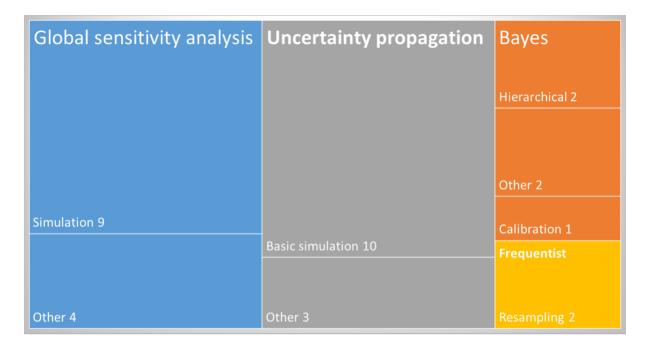


Figure 8: Uncertainty quantification methods applied or investigated in the context of PBPK or QSP models in the last 10 Years (since 2015)

3.4 List of highly relevant papers for further work

During the full text extraction, 19 papers were identified as highly relevant to the project aim. These papers covered both methodological developments and applications of advanced UQ techniques that could be considered for future simulation studies, such as Bayesian hierarchical modeling and global sensitivity analysis. It should be noted that the selection of specific UQ techniques for the coming simulation study will be addressed later and the purpose of this collection is solely to provide a broad reference base. The selected papers and their key contributions are summarized below:

- 1. A Bayesian population PBPK model for multiroute chloroform exposure[53]. Applied Bayesian hierarchical modeling method to assess the UQ of a PBPK model.
- 2. A computational workflow for probabilistic quantitative in vitro to in vivo extrapolation[54].
 - Employed global sensitivity analysis with the approximate Bayesian computation to evaluate the UQ of a PBPK model.
- 3. A framework for 2-stage global sensitivity analysis of GastroPlus™ compartmental models[55].
 - Applied global sensitivity analysis to evaluate the UQ of a PBPK model.
- 4. A fuzzy physiologically based pharmacokinetic modeling framework to predict drug disposition in humans[56].
 - Proposed a PBPK framework using fuzzy computations to assess UQ.
- 5. A generalized polynomial chaos-based method for efficient Bayesian calibration of uncertain computational models[57].
 - Provided theoretical foundations for Bayesian calibration and polynomial chaos methods.
- 6. A Novel Method for Assessing Drug Degradation Product Safety Using Physiologically-Based Pharmacokinetic Models and Stochastic Risk Assessment[58].

- Applied probabilistic sensitivity analysis to assess UQ of a PBPK model.
- 7. A sequential calibration and validation framework for model uncertainty quantification and reduction[59].
 - Reviewed advanced UQ methods, including Bayesian calibration and Gaussian process surrogate modeling.
- 8. Analysis of PBPK models for risk characterization[60]. Applied Bayesian hierarchical modeling method for UQ of a PBPK model.
- 9. Assessing drug distribution in tissues expressing P-glycoprotein using physiologically based pharmacokinetic modeling: identification of important model parameters through global sensitivity analysis[61].
 - Identified key model parameters using global sensitivity analysis to evaluate UQ.
- 10. Bayesian calibration of computer models[62].

 Illustrated the Bayesian calibration methodology.
- 11. Bayesian calibration of multistate stochastic simulators[63]. Focused on Bayesian calibration methods for large-scale models.
- 12. Bayesian calibration, validation, and uncertainty quantification of diffuse interface models of tumor growth[64].
 - Discussed Bayesian calibration techniques and Bayesian inference methods.
- 13. Bayesian evaluation of a physiologically based pharmacokinetic (PBPK) model for perfluorooctane sulfonate (PFOS) to characterize the interspecies uncertainty between mice, rats, monkeys, and humans: Development and performance verification[65]. *Applied Bayesian hierarchical modeling method to assess the UQ of a PBPK model.*
- 14. Bayesian methods for uncertainty factor application for derivation of reference values[66].
 - Applied Bayesian approaches to UQ in a PBPK model.
- 15. Human Variability in Carboxylesterases and carboxylesterase-related Uncertainty Factors for Chemical Risk Assessment[67].
 - Used Bayesian hierarchical modeling method to assess UQ of a PBPK model for chemical risk assessment.
- 16. Improving the estimation of parameter uncertainty distributions in nonlinear mixed effects models using sampling importance resampling[68].

 Introduced sampling importance resampling to improve UQ estimation.
- 17. Probabilistic framework for the estimation of the adult and child toxicokinetic intraspecies uncertainty [69].
 - Discussed probabilistic sensitivity analysis and uncertainty propagation methods.
- 18. Uncertainty quantification and propagation in surrogate-based Bayesian inference[70]. Focused on Bayesian approaches to surrogate modeling and UQ.
- 19. Using machine learning surrogate modeling for faster QSP VP cohort generation[71]. Applied ML surrogate modeling for a QSP model.

4 Conclusion and discussion

This review shows a clear gap in the availability of well-established methods for UQ tailored to complex models in drug development and regulatory evaluation, as illustrated in **Figure 8**. Nonetheless, a diverse range of UQ techniques originating from disciplines such as mathematics and statistics, engineering, analytical chemistry, and toxicology holds substantial

potential for application in this context, as illustrated in **Figure 7**. Among these, global sensitivity analysis, uncertainty propagation, and Bayesian approaches emerged as the most frequently reported and widely applied methods.

The findings underscore the critical importance of adapting adequate UQ methodologies to improve the reliability and robustness of PBPK, QSP, and ML models. By identifying promising candidate methods from both within and outside drug development, this review lays the groundwork for targeted simulation studies. These next steps will provide a robust evidence base for selecting and refining UQ methods that can meaningfully enhance decision-making in drug development and evaluation.

5 Funding sources/sponsors

This work is funded by the EMA Project "Uncertainty quantification for complex models supporting regulatory decision making" - Re-opening of competition EMA/2020/46/TDA/L3.02-ROC22.

6 Reference

- 1. Milligan PA, Brown MJ, Marchant B. Model-based drug development: a rational approach to efficiently accelerate drug development. Clin Pharmacol Ther. 2013;93:502–14.
- 2. Wang YN, Zhu H, Madabushi R, Liu Q, Huang SM, Zineh I. Model-Informed Drug Development: Current US Regulatory Practice and Future Considerations. Clin Pharmacol Ther. 2019;105:899–911.
- 3. Madabushi R, Seo P, Zhao L, Tegenge M, Zhu H. Review: Role of Model-Informed Drug Development Approaches in the Lifecycle of Drug Development and Regulatory Decision-Making. Pharm Res. 2022;39:1669–80.
- 4. Jones H, Rowland-Yeo K. Basic Concepts in Physiologically Based Pharmacokinetic Modeling in Drug Discovery and Development. CPT Pharmacomet Syst Pharmacol. 2013;2.
- <u>5. Braakman S, Pathmanathan P, Moore H. Evaluation framework for systems models. CPT Pharmacomet Syst Pharmacol. 2022;11:264–89.</u>
- 6. Lin W, Chen Y, Unadkat JD, Zhang X, Wu D, Heimbach T. Applications, Challenges, and Outlook for PBPK Modeling and Simulation: A Regulatory, Industrial and Academic Perspective. Pharm Res. 2022;39:1701–31.
- 7. Zhao P, Zhang L, Grillo J. Applications of Physiologically Based Pharmacokinetic (PBPK. Modeling and Simulation During Regulatory Review Clin Pharmacol Ther. 2011;89:259–67.
- 8. Tsamandouras N, Rostami-Hodjegan A, Aarons L. Combining the 'bottom up' and 'top down' approaches in pharmacokinetic modelling: fitting PBPK models to observed clinical data. Br J Clin Pharmacol. 2015;79:48–55.

- 9. Jones HM, Parrott N, Jorga K, Lavé T. A novel strategy for physiologically based predictions of human pharmacokinetics. Clin Pharmacokinet. 2006;45:511–42.
- 10. Shepard T, Scott G, Cole S, Nordmark A, Bouzom F. Physiologically Based Models in Regulatory Submissions: Output From the ABPI/MHRA Forum on Physiologically Based Modeling and Simulation. CPT Pharmacom & Syst Pharma. 2015;4:221–5.
- 11. Research C for DE and. Physiologically Based Pharmacokinetic Analyses Format and Content Guidance for Industry [Internet]. FDA; 2021 [cited 2025 Aug 14]. Available from: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/physiologically-based-pharmacokinetic-analyses-format-and-content-guidance-industry
- 12. Vamathevan J, Clark D, Czodrowski P. Applications of machine learning in drug discovery and development. Nat Rev Drug Discov. 2019;18:463–77.
- 13. Ryeznik Y, Sverdlov O. Pharmacometrics and machine learning in drug development.

 Pais A, Vitorino C, Nunes S, Cova T, editors. Artificial Intelligence for Drug Product Lifecycle

 Applications Academic Press. 2025:99–108.
- 14. Bedon L, Cecchin E, Fabbiani E. Machine Learning Application in a Phase I Clinical Trial Allows for the Identification of Clinical-Biomolecular Markers Significantly Associated With Toxicity. Clin Pharmacol Ther. 2022;111:686–96.
- 15. Fagerholm U, Hellberg S, Spjuth O. Advances in Predictions of Oral Bioavailability of Candidate Drugs in Man with New Machine Learning Methodology. Mol Basel Switz. 2021;26.
- 16. Réda C, Kaufmann E, Delahaye-Duriez A. Machine learning applications in drug development. Comput Struct Biotechnol J. 2020;18:241–52.
- 17. Bertolini D, Loukianov AD, Smith A. Forecasting progression of mild cognitive impairment (MCI) and Alzheimer's disease (AD) with digital twins. Alzheimers Dement. 2021;17.
- 18. Friedrich S, Antes G, Behr S. Is there a role for statistics in artificial intelligence? Adv Data Anal Classif. 2022;16:823–46.
- 19. Smith RC. Uncertainty Quantification: Theory, Implementation, and Applications. Society for Industrial and Applied Mathematics. 2013;
- 20. Sullivan TJ. Introduction to Uncertainty Quantification. Springer Cham; 2015.
- 21. Chen X, Nyberg HB, Donnelly M. Development and comparison of model-integrated evidence approaches for bioequivalence studies with pharmacokinetic end points. CPT Pharmacomet Syst Pharmacol. 2024;13:1734–47.
- <u>22. Nyberg HB, Chen X, Donnelly M. Evaluation of model-integrated evidence approaches for pharmacokinetic bioequivalence studies using model averaging methods. CPT Pharmacomet Syst Pharmacol. 2024;13:1748–61.</u>
- 23. Dosne AG, Bergstrand M, Karlsson MO. An automated sampling importance resampling procedure for estimating parameter uncertainty. J Pharmacokinet Pharmacodyn. 2017;44:509–20.

- 24. Friede T, Röver C, Wandel S, Neuenschwander B. Meta-analysis of few small studies in orphan diseases. Res Synth Methods. 2017;8:79–91.
- 25. Röver C, Friede T. Dynamically borrowing strength from another study through shrinkage estimation. Stat Methods Med Res. 2020;29:293–308.
- 26. Röver C, Ursino M, Friede T, Zohar S. A straightforward meta-analysis approach for oncology phase I dose-finding studies. Stat Med. 2022;41:3915–40.
- 27. Günhan BK, Meyvisch P, Friede T. Shrinkage estimation for dose-response modeling in phase II trials with multiple schedules. Stat Biopharm Res. 2022;14:249–61.
- 28. Kennedy MC, O'Hagan A. Bayesian Calibration of Computer Models. J R Stat Soc Ser B Stat Methodol. 2001;63:425–64.
- 29. Strong M, Oakley JE. When Is a Model Good Enough? Deriving the Expected Value of Model Improvement via Specifying Internal Model Discrepancies. SIAMASA J Uncertain Quantif. 2014;2:106–25.
- 30. Owen NE, Challenor P, Menon PP, Bennani S. Comparison of Surrogate-Based Uncertainty Quantification Methods for Computationally Expensive Simulators. SIAMASA J Uncertain Quantif. 2017;5:403–35.
- 31. Sudret B, Marelli S, Wiart J. Surrogate models for uncertainty quantification: An overview. 2017 11th European Conference on Antennas and Propagation (EUCAP. 2017:793–7.
- 32. Lash TL, Fox MP, MacLehose RF, Maldonado G, McCandless LC, Greenland S. Good practices for quantitative bias analysis. Int J Epidemiol. 2014;43:1969–85.
- 33. Najjar A, Hamadeh A, Krause S, Schepky A, Edginton A. Global sensitivity analysis of Open Systems Pharmacology Suite physiologically based pharmacokinetic models. CPT Pharmacomet Syst Pharmacol. 2024;13:2052–67.
- 34. McNally K, Cotton R, Loizou GD. A Workflow for Global Sensitivity Analysis of PBPK Models. Front Pharmacol. 2011;2.
- 35. Langdon G, Gueorguieva I, Aarons L, Karlsson M. Linking preclinical and clinical whole-body physiologically based pharmacokinetic models with prior distributions in NONMEM. Eur J Clin Pharmacol. 2007;63:485–98.
- 36. Gisleskog PO, Karlsson MO, Beal SL. Use of prior information to stabilize a population data analysis. J Pharmacokinet Pharmacodyn. 2002;29:473–505.
- 37. Global Sensitivity Analysis. The Primer. Global Sensitivity Analysis The Primer [Internet]. John Wiley & Sons, Ltd; 2007 [cited 2025 Aug 15]. p. i–xi. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1002/9780470725184.fmatter
- 38. Sobol' IM. Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates. Mathematics and Computers in Simulation. 2001;55:271–80.
- 39. Morris MD. Factorial Sampling Plans for Preliminary Computational Experiments. Technometrics. 1991;33:161–74.

- 40. Cukier RI, Schaibly JH, Shuler KE. Study of the sensitivity of coupled reaction systems to uncertainties in rate coefficients. III. Analysis of the approximations. J Chem Phys. 1975;63:1140–9.
- 41. Soize C, Ghanem R. Physical Systems with Random Uncertainties: Chaos Representations with Arbitrary Probability Measure. SIAM J Sci Comput. 2004;26:395–410.
- 42. Moore R, Lodwick W. Interval analysis and fuzzy set theory. Fuzzy Sets and Systems. 2003;135:5–9.
- 43. Handbook of Monte Carlo Methods. Handbook of Monte Carlo Methods [Internet]. John Wiley & Sons, Ltd; 2011 [cited 2025 Aug 15]. p. i–xix. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1002/9781118014967.fmatter
- 44. Sargsyan K. Surrogate Models for Uncertainty Propagation and Sensitivity Analysis.

 Handbook of Uncertainty Quantification [Internet]. Springer, Cham; 2017 [cited 2025 Aug
 15]. p. 673–98. Available from: https://link.springer.com/rwe/10.1007/978-3-319-12385-1 22
- 45. Soepyan FB, Cremaschi S, Sarica C, Subramani HJ, Kouba GE, Gao H. Estimation of percentiles using the Kriging method for uncertainty propagation. Computers & Chemical Engineering. 2016;93:143–59.
- 46. Mae Y, Kumagai W, Kanamori T. Uncertainty propagation for dropout-based Bayesian neural networks. Neural Networks. 2021;144:394–406.
- 47. Gelman A, Carlin JB, Stern HS, Rubin DB. Bayesian Data Analysis. 2nd ed. New York: Chapman and Hall/CRC; 2003.
- 48. Broeker A, Wicha SG. Assessing parameter uncertainty in small-n pharmacometric analyses: value of the log-likelihood profiling-based sampling importance resampling (LLP-SIR) technique. J Pharmacokinet Pharmacodyn. 2020;47:219–28.
- 49. Efron B, Tibshirani RJ. An Introduction to the Bootstrap. New York: Chapman and Hall/CRC; 1994.
- 50. Efron B, Stein C. The Jackknife Estimate of Variance. The Annals of Statistics. 1981;9:586–96.
- 51. Liu Z, Yang Y. Uncertain pharmacokinetic model based on uncertain differential equation. Applied Mathematics and Computation. 2021;404:126118.
- 52. Liu B. Some research problems in uncertainy theory. Journal of Uncertain Systems. 2009;3:3–10.
- 53. Yang Y, Xu X, Georgopoulos PG. A Bayesian population PBPK model for multiroute chloroform exposure. J Expo Sci Environ Epidemiol. 2010;20:326–41.
- 54. McNally K, Hogg A, Loizou G. A computational workflow for probabilistic quantitative in vitro to in vivo extrapolation. Frontiers in Pharmacology [Internet]. 2018;9. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85047120193&doi=10.3389%2ffphar.2018.00508&partnerID=40&md5=c1ec565aa993ae42aca47fba0c15b476

- 55. Scherholz ML, Forder J, Androulakis IP. A framework for 2-stage global sensitivity analysis of GastroPlusTM compartmental models. J Pharmacokinet Pharmacodyn. 2018;45:309–27.
- 56. Seng KY, Vicini P, Nestorov IA. A fuzzy physiologically based pharmacokinetic modeling framework to predict drug disposition in humans. Conf Proc IEEE Eng Med Biol Soc. 2006;6485–8.
- 57. Tagade PM, Choi H-L. A generalized polynomial chaos-based method for efficient Bayesian calibration of uncertain computational models. Inverse Probl Sci Eng. 2014;22:602.
- 58. Nguyen HQ, Stamatis SD, Kirsch LE. J Pharm Sci. 2015;104:3101–19.
- 59. Jiang C, Hu Z, Liu Y, Mourelatos ZP, Gorsich D, Jayakumar P. A sequential calibration and validation framework for model uncertainty quantification and reduction. Comput Methods Appl Mech Engrg. 2020;368:113172.
- <u>60. Bois FY. Analysis of PBPK models for risk characterization. Ann N Y Acad Sci.</u> <u>1999;895:317–37.</u>
- 61. Fenneteau F, Li J, Nekka F. Assessing drug distribution in tissues expressing P-glycoprotein using physiologically based pharmacokinetic modeling: identification of important model parameters through global sensitivity analysis. J Pharmacokinet Pharmacodyn. 2009;36:495–522.
- 62. Kennedy MC, O'Hagan A. Bayesian calibration of computer models. J R Stat Soc Ser B Stat Methodol. 2001;63:425.
- 63. Pratola MT, Chkrebtii O. Bayesian calibration of multistate stochastic simulators. Statist Sinica. 2018;28:693.
- 64. Hawkins-Daarud A, Prudhomme S, van der Zee KG, Oden JT. Bayesian calibration, validation, and uncertainty quantification of diffuse interface models of tumor growth. J Math Biol. 2013;67:1457.
- 65. Chou W-C, Lin Z. Bayesian evaluation of a physiologically based pharmacokinetic (PBPK) model for perfluorooctane sulfonate (PFOS) to characterize the interspecies uncertainty between mice, rats, monkeys, and humans: Development and performance verification. Environment International. 2019;129:408–22.
- 66. Simon TW, Zhu Y, Dourson ML, Beck NB. Bayesian methods for uncertainty factor application for derivation of reference values. Regulatory Toxicology and Pharmacology. 2016;80:9–24.
- 67. Di Consiglio E, Darney K, Buratti FM, Turco L, Vichi S, Testai E, et al. Human Variability in Carboxylesterases and carboxylesterase-related Uncertainty Factors for Chemical Risk Assessment. Toxicology Letters. 2021;350:162–70.
- 68. Dosne AG, Bergstrand M, Harling K, Karlsson MO. Improving the estimation of parameter uncertainty distributions in nonlinear mixed effects models using sampling importance resampling. J Pharmacokinet Pharmacodyn. 2016;43:583–96.
- 69. Pelekis M, Nicolich MJ, Gauthier JS. Probabilistic framework for the estimation of the adult and child toxicokinetic intraspecies uncertainty factors. Risk Anal. 2003;23:1239–55.

70. Reiser P, Aguilar JE, Guthke A, Bürkner P-C. Uncertainty quantification and propagation in surrogate-based Bayesian inference. Stat Comput [Internet]. 2025 [cited 1 AD Jan 1];35.

71. Myers RC, Augustin F, Huard J, Friedrich CM. Using machine learning surrogate modeling for faster QSP VP cohort generation. CPT Pharmacometrics Syst Pharmacol. 2023;12:1047–59.

Appendix 1

The columns and the corresponding instructions that are used in full-text extraction step

Column	Instructions
Inclusion	Include or exclude the paper based on the following
	criteria:
	Inclusion criteria:
	- Research and methodological publications discussing
	uncertainty quantification (UQ) methods.
	- Publications, presenting case studies, where UQ
	methods for PBPK, QSP, and ML models have been
	applied (clinical trials, simulation study, and modeling).
	- Publications including other types of models that the UQ
	method may be potentially useful for our case Exclusion criteria:
	- Investigations/publications that are not relevant to the
	main objective:
	- Do not focus on UQ for modeling problems considered.
	- Case study using UQ methods for estimation, but not
	focusing on UQ.
	For example: Local sensitivity analysis
Type of paper:	- Only one answer is allowed for each paper. If a paper
Methodology/Application/Re	includes elements of several different publication types,
view	decide from context which one fits the main purpose of the
	paper best and use this as an answer. The main focus of
	the paper decide if the paper should be classified as
	methodology or application, or review. You can ignore
	single aspects of the paper that suggest a category that
	differs from the main focus of the paper.
	- Papers that focus on application, i.e., the purpose of the study is to understand, develop, design, etc, models
	regarding a specific product or drug should be categorized
	as "application". For example, some PBPK paper applies
	some existing UQ method to develop a good model for that
	application, but do not specifically evaluate the used UQ
	method in comparison to other models.
	- Classify papers as methodology if the main purpose and
	focus of the paper is to introduce or evaluate UQ
	methodology, such as adapting or extending a model
	framework.
	-Classify papers as "application" if the paper used an
	uncertainty method for estimation rather than focusing on
LIO mothodo	the uncertainty method development or evaluation
UQ methods	Extract the statistical methods used for uncertainty
	estimation& qualification. E.g., Bayesian hierarchical meta-regression, Bayesian calibration, model discrepancy
	analysis, surrogate modeling, probabilistic sensitivity
	analysis, uncertainty propagation, interval analysis, fuzzy
	computations, frequentist.
Drug therapy development:	- Check if the paper is related to the development,
Yes/No	repurposing or maintenance of a drug or vaccine for
	clinical use. Drug development includes drug discovery,
	chemistry and pharmacology, nonclinical safety testing,
	dose finding, manufacturing, clinical trials, and regulatory
	submissions.
	- Also include papers that focus on existing drugs

Drug therapy development: Therapeutic area	Check if the paper is related to drug therapy or vaccine development. If yes, state the therapeutic area the drug is applied in and the corresponding ICD 11 code. If no: give precisely the answer: "not applicable".
Drug therapy development: Type of the product: small molecule, biologics, not applicable	Check if the paper is related to drug therapy or vaccine development. If yes, state the type of product. If no: give precisely the answer: "not applicable".
Drug therapy development: Stage of drug development	Check if the paper is related to drug therapy or vaccine development. If the paper is related to drug therapy or vaccine development and: - the stage is clearly stated in the paper, use that term and add "(stated)" or - the stage is not clearly stated but you can tell from context, state your best guess and add "(guess)" or - the stage is not mentioned and also not clear from context, state "not specified". If the paper is not related to drug therapy or vaccine development just state: "not applicable"
Drug therapy development: Purpose of the model	Check if the paper is related to drug therapy or vaccine development. If yes give the purpose of the used pharmacometric model. Examples are: dose finding, identification of subpopulations. If the paper is not related to drug therapy or vaccine development just state: "not applicable"
Simulation	Determine whether the paper uses a simulation study to evaluate uncertainty quantification methods. If the simulation is solely used for assessing model prediction, respond with "No"
Software availability	Is the software and skripts that were used to implement the uncertainty models described in the paper? The information is often given in the data availability statement. Use the following categories: open source, commercial platform, no. - Open source means that the code is publicly availiable for example scripts that are provided in the appendix and ready to use. The information which programming language or plattform was used is not sufficient. Skripts or code have to be provided or there should be instructions on how or where to access code that is freely availiable somewhere - commercial platform means a commercial platform is used which does not allow to easily reproduce the analyses. The information which programming language or plattform was used is not sufficient by itself. Instructions to access skripts or code or at least some parameter values or model equations used for specifying the model have to be given - no means the software to reproduce the results is not

	mentionned at all or there are no instructions on how to implement the model in the software (no instructions on skript or code availiability or configuration of model parameters or model equations) - only 1 of the 3 categories can be chosen
code availability	Were code or scripts, or model parameters, provided that allow reproduction of the UQ models? If no instructions are given in the paper on how to access code, scripts or how to reproduce the model using specified model parameters and equations then classify this as "no". "commercial platform with given parameters" means a commercial platform was used, and instructions to access scripts or code or at least some parameter values or model equations necessary to reproduce the model are given. Open source means that code/skript are contained in the paper or appendix, or instructions are given on how to freely access the code/scripts somewhere else, and the analyses can be reproduced using open source software. "Upon request to the authors" means that code or instructions for reproducibility are not directly available in the paper, but there is a specific statement in the paper offering readers to obtain code or scripts from the authors.
software used	Include the names of any software, packages, programming languages, etc., used in the study to estimate the uncertainty quantification model. Leave blank if no such software was used or mentioned.

Supplementary material: literature_review_sup1_summary.xlsx

Bibliographic information and extracted information for all articles included in our systematic review.

Title	Authors	DOI DOI link Venue	Otation count Year	Inclusion	Type of paper Type o	model Uncertainty quantification methods	UQ method - rough	UQ method - fine	Drug therapy development	Drug therapy development: Therapeutic area	Drug therapy development: Type of the product	Drug therapy development: Stag of drug development	Drug therapy development: ge Purpose of the model	Simulation	Software availability	code availiability	software used
parametric analysis of the hormonal therapy of cancer		10.1016/j.chao https://doi.org/ Chaos, s.2021.111618 10.1016/j.chao Solitons and s.2021.111618 Fractals	11	2021 Yes	methodology Others	Sobol sensitivity analysis (global SA), Monte-Carlo estimat	ion Sensitivity analysis	SA - simulation	Yes	not applicable	not applicable	not applicable	The purpose of the model is to simulate and analyze the effects of chemotherapy and immunotherapy on tumor cells, focusing on pharmacokinetic- pharmacodynamic (PK-PD) effects and the effectiveness of different administration methods.	No	Commercial platform	No	MATLAB Simulink
Bayesian model calibration for block copolymer self- assembly: Likelihood-free inference and expected information gain computation via measure transport	Baptista, Ricardo, Cao, Lianghao, Chen, Joshua, Ghattas, Omar, Ll. Fengyi, Marzouk, Youssef M., Oden, J. Tinsley	10.1016/j.jcp,2 <u>https://doi.org/</u> Journal of 024.112844 <u>10.1016/j.jcp.2</u> Computation. 024.112844 Physics	3 al	2024 Yes	methodology Others	Bayesian calibration, Mealthood free inference (LFI), expecinformation gain (EIG), measure transport	Bayes, Other	Bayes - calibration	No	not applicable	not applicable	not applicable	Not applicable (the paper is related to block copolymer self- assembly and lithography, not drug therapy or vaccine development)	Yes	Open source	Open source	- TransportMaps Python package - FEniCS library - hIPPylib python package - Python programming language
A Bayesian model calibration framework to evaluate brain tissue characterization experiments.	Teferra, Kirubel, Brewick, Patrick T.	10.1016/j.cma. https://doi.org/ Computer 2019.112604 10.1016/j.cma. Methods in 2019.112694 Applied Mechanics ar Engineering	19 nd	2019 Yes	methodology Others	Bayesian calibration, nested sampling algorithm, probabilis sensitivity analysis	Sensitivity analysis, Bayes	SA - simulation, Bayes - calibration	No	not applicable	not applicable	not applicable	Not applicable (the paper is related to mechanical properties of brain tissue and simulation- based applications, not drug therapy or vaccine development)	No	Open source	No	MultiNest
A trichloroethylene risk assessment using a Monte Carlo analysis of parameter uncertainty in conjunction with physiologically-based pharmacokinetic modeling.	Fisher JW, Flemming CD	10.1111/j.1539- https://doi.org/ Risk analysis 6924.1995.tb0 10.1111/j.152 an official 0752.x 9 publication of 6924.1995.tb0 the Society fr. Risk Analysis	or.	1995 Yes	methodology PBPK	Monte Carlo simulation, sensitivity analysis	Sensitivity analysis	SA - simulation	No	not applicable	not applicable	not applicable	not applicable (the paper is related to risk assessment for trichloroethylene and not to drug therapy or vaccine development)	Yes	Commercial platform		PBPK SIM, developed by Clement International Corporation
Bayesian estimation of pharmacokinetic parameters for DCE-MRI with a robust treatment of enhancement onset time.	Orton MR, Collins DJ, Walker-Samuel S, d'Arcy JA, Hawkes DJ, Atkinson D, Leach MO	10.10880031- https://doi.org/ Physics in 9155/52/9/005 10.1088/0031: medicine and 1155/52/9/00 biology	38	2007 Yes	methodology Others	Bayesian methods, marginal posterior distribution	Bayes	Bayes - Other	Yes	Oncology; C00-D49	not applicable	clinical trials (guese	s) The purpose of the pharmacometric model is to assist in clinical drug trials by providing physiological insights into tissue behavior, particularly through improved estimation of pharmacokinetic parameters and onset detection. This is relevant to drug therapy development in oncology.	Yes	Commercial platform	No	Matlab
A probabilistic approach for deriving acceptable human intake limits and human health risks from toxicological studies: general framework.	Slob W, Pleters MN	10.1023/b:rian. https://doi.org/ Risk analysis 0000005924.1 10.1023/b/rian. an official 8154.60 000005924.1 publication of the Society fr Risk Analysis		1998 Yes	methodology Others	Monte Carlo calculations, Bootstrap method, Probabilistic sensitivity analysis,	Sensitivity analysis, basic frequentist	SA - simulation, Freq - resampling, Freq - Other	Yes	not applicable	small molecule	not applicable	Not applicable (the paper is related to toxicological risk assessment rather than drug therapy or vaccine development)	Yes	No	No	Not mentioned
Application of physiologically based kinetic (PBK) modelling in the next generation risk assessment of dermally applied consumer products.	Nicol B, Pickles J, Pendlington R, Sorrell I,	10.1016/j.tiv.2 https://doi.org/ Toxicology in 019.104746	41	2020 Yes	methodology PBPK	Monte Carlo simulations, local sensitivity analysis, coefficie of variation (CV) analysis	nt Sensitivity analysis, basic frequentist	SA - analytical	No	not applicable	not applicable	not applicable	not applicable (the paper is related to consumer product safety assessment, not drug therapy development)	Yes	Commercial platform	No	GastroPlus 9.6, GastroPlus PSA, Python (v3.7)
An assessment and quantitative uncertainty analysis of the health risks to workers exposed to chromium contaminated soils.	Paustenbach DJ, Meyer DM, Sheehan PJ Lau V	, 10.1177/0748 https://doi.org/ Toxicology.ar 23379100700 10.1177/0748 industrial 304 23379100700 health	ed 60	1991 Yes	application Others	Monte Carlo statistical simulation	Uncertainty propagation	UP - prob - basic sim	No	not applicable	not applicable	not applicable	Not applicable (the paper is related to environmental health risk assessment, not drug therapy or vaccine development)	No	Commercial platform	Commercial platform with given parameters	@RISK (Palisade Corporation, 1989)
Analysis of uncertainty in theoretical methods of cardiac output measurement using the "Monte Carlo" technique.		10.1093/bja/71 https://doi.org/ British journa .3.403 10.1093/hja/7 of anaesthes 1.3.403	ia	1993 Yes	application Others	Monte Carlo simulation	Uncertainty propagation	UP - prob - basic sim		anaesthesia	not applicable	not applicable	related to cardiac output measurement using anaesthetic agents)	No	No	No	Pascal, 'C', Macintosh Toolbox 'random' function
Bootstrap resampling: a powerful method of assessing confidence intervals for doses from experimental data	Iwi, G., Milard, R. K., Palmer, A. M., Preece, A. W., Saunders, M.	10.1088/0031- https://doi.org/ Physics in 9155/44/4/021 10.1088/0031- Medicine & 9155/44/4/02 Biology 1	37	1999 Yes	methodology Others	Bootstrap resampling	basic frequentist	Freq - resampling, Freq - Other	No	not applicable	not applicable	not applicable	not applicable (the paper is related to radiation dosimetry and not drug therapy or vaccine development)	No	No	No	Not metioned
Assessing parameter uncertainty in mani-hybrid manipulation of the parameter of the paramet	Broeker A, Wicha SG	10.1007/s1092 https://doi.org/ Journal of Me.020.09882-4 10.0007/s182 pharmacodyr discounting from the first of the first		2020 Yes	methodology Others	- Standard Error (SE) - Bootstrap (BS) - Log-likelihood Profiling (LLP) - Bayesian approaches (BAY) - Sampling Importance Resampling (SIR) - SE-SIR - BS-SIR - LLP-SIR	basic frequentist Bayes	, Bayes - Other, Freq Other, Freq - likelihood, Freq - resampling	- Yes	not applicable	not applicable	not specified	The purpose of the pharmacometric model is to assess parameter uncertainty in small datasets, which is crucial for drug development, particularly in undentainting pharmacokinetics and dose finding.	Yes	Commercial platform	No	NONMEM 7.4.3, R 3.6.1, Pan 4.7.0, MCMC, NUTS
A probabilistic approach to obtaining limiting estimates of radionuclide concentration in biota	Higley KA, Domotor SL, Antonio EJ	10.1016/S026 https://doi.org/ Journal of 5- 10.1016/S026 environments 7-0 231X(02)0011 7-0 2-0 and 10.1016/S026 environments 7-0 and 10.1016/S026 environments 7-0 and 10.1016/S026 environments 7-0 environments	24 I	2003 Yes	application Others	Stratified Monte-Carlo Latin Hypercube Sampling Qualitative (local) sensitivity analysis	Uncertainty propagation, Sensitivity analysis	UP - prob - basic sim, SA - simulation	No	not applicable	not applicable	not applicable	not applicable	No	Commercial platform	No	CrystalBall TM software
Assessing drug distribution in tissues expressing P- glycoprotein using physiologically based pharmacokinetic modeling identification of important model parameters through global sensitivity analysis.	Fenneteau F, Li J, Nekka F	10.1007/s1092 https://doi.org/ Journal of 8009-9134-8 10.1007/s1102 pharmacol of 28.009-9134-8 ca and pharmacody mics		2009 Yes	methodology PBPK	Monte-Carto simulations, Partial Rank Correlation Coefficie (PRCC), Global Sensitivity Analysis (GSA)	nts Sensitivity analysis, basic frequentist	SA - simulation	Yes	not applicable	small molecule	early stages of dru discovery or preclinical development	Ig The purpose of the pharmacometric model is to improve the understanding of drug distribution in tissues expressing P-glycoprotein (P-ga), which is crucial for drug therapy development by identifying important input parameters that affect model outcomes and reducing uncertainty in model predictions.	No	Commercial platform	No	Matlab (The Mathworks, Inc.) and the Statistic Matlab toolbox

A fuzzy physiologically based pharmacoknetic modeling framework to predict drug disposition in humans.	ni P, Nestorov IA	10.1109/IEMB https://doi.org/ Conference		2006 Yes	methodology PBPK	Fuzzy computations, fuzzy arithmetic, sparse grid interpolation, vertex method	Uncertainty propagation	UP - non prob	Yes	Psychiatry and Neurology, 6A00-6A92	small molecule	Not specified	The purpose of the model is to inform drug selection during early drug discovery and to predict intravenous pharmacoknetic intravenous pharmacoknetic profiles in humans before in vivo experiments, alding in clinical candidate selection.		Commercial platform	No	MATLAB 7.0
An empirical multivariate log-normal distribution representing uncertainty of blokinetic parameters for 137Cs. Miller G, Melo D Distribution representing uncertainty of blokinetic parameters for 137Cs.	D, Martz H, Bertelli L	10.1093/rpd/nc https://doi.org/ n131 10.1093/rpd/n protection cn131 dosimetry	5	2008 Yes	methodology Others	Bayesian analysis, importance sampling, multivariate log- normal distribution, stratified sampling, Latin Hypercube sampling	Bayes	Bayes - Other	No	not applicable	not applicable	not applicable	not applicable (the paper is related to radiation exposure and internal dosimetry, not drug therapy or vaccine development)		No	No	Los Alamos UF code
Bayesian analysis of a rat formaldehyde DNA-protein Clewell HJ 3rd cross-link model.		10.1080/1528 https://doi.org/ Journal of 73910036892 10.1080/1528 toxicology and 73910036892 environmental 34 health. Part A	-	2010 Yes	application Others	Bayesian hierarchical analysis using Markov chain Monte Carlo (MCMC) for uncertainty quantification	Bayes	Bayes - hierachical	No	not applicable	not applicable	not applicable	not applicable	Yes	No	No	MCSim, Bayesian Output Analysis (BOA) program
Analysis of PBPK models Bois FY for risk characterization.		10.1111/j.1749- <u>https://doi.org/</u> Annals of the 6632.1999.tb0 10.1111/j.174 New York 2093.x 9.5632.1999.tb0 Sciences	47	1999 Yes	methodology PBPK	- Bayesian framework for risk characterization - Herarchical statistical modeling - Markov chain Monte Carlo (MCMC) simulations - Monte Carlo simulations	Bayes	Bayes - hierachical	No	not applicable	not applicable		related to risk characterization and toxicokinetics, not drug therapy or vaccine development)	No	No	No	MCSim program
Analytical expressions for Dokoumetzidis / combining population pharmacokinetic parameters from different studies.	A, Aarons L	10.1080/1054 https://doi.org/ dournal of 34008020713 10.1080/1094 <a< td=""><td>7 ti</td><td>2008 Yes</td><td>methodology Others</td><td>Bayesian hierarchical approach using normal-inverse-gamme (NKC) and normal-inverse-Wahart (NMK) destinations for uncertainty quantification, application of Bayes' theorem for combining hyperparameters, use of Well-UGS for setting up informative priors and model fitting.</td><td>•</td><td>Bayes - hierachical</td><td>Yes</td><td>Nervous system disorders; ICD-11 code not specified in the paper</td><td>small molecule</td><td></td><td>The purpose of the r pharmacometric model is to assis in drug therapy development by providing a method for combining different analyses of population pharmacokinetic studies, which can be used for dose finding and understanding population variability.</td><td></td><td>Commercial platform</td><td>No</td><td>WinBUGS 1.4, Pharmaco plug- in, NONMEM</td></a<>	7 ti	2008 Yes	methodology Others	Bayesian hierarchical approach using normal-inverse-gamme (NKC) and normal-inverse-Wahart (NMK) destinations for uncertainty quantification, application of Bayes' theorem for combining hyperparameters, use of Well-UGS for setting up informative priors and model fitting.	•	Bayes - hierachical	Yes	Nervous system disorders; ICD-11 code not specified in the paper	small molecule		The purpose of the r pharmacometric model is to assis in drug therapy development by providing a method for combining different analyses of population pharmacokinetic studies, which can be used for dose finding and understanding population variability.		Commercial platform	No	WinBUGS 1.4, Pharmaco plug- in, NONMEM
Analysis of the uncertainty Molokanov A, B in internal dose estimate resulting from biological stochastic variability of excretion.	Blanchardon E	10.1093/rpd/nc https://doi.org/ Radiation 1551 10.1093/rpd/n protection clS51 dosimetry	1	2007 Yes	methodology PBPK	Monte Carlo simulation technique, log-normal distribution assumption, standard deviation calculation	Uncertainty propagation	UP - prob - basic sim	No	not applicable	not applicable	not applicable	not applicable	Yes	No	No	Monte Carlo simulation technique (no specific software or programming language mentioned)
A continuous-time adaptive particle filter for estimations under measurement time uncertainties with an application to a plasmaleucine mixed effects model.	uth J, Taskinen MR, Adiels	10.1186/1752- https://doi.org/ BMC systems 0509-7-8 10.1186/1752- biology 0509-7-8	8	2013 Yes	methodology Others	- Sequential Monte Carlo (SMC) methods - Bayesian methods - Monte Carlo simulation - Adaptive stepsize choice	Bayes	Bayes - Other	Yes	Diabetes; E10-E14	not applicable	not applicable	identification of subpopulations	No	Commercial platform	No	Mathematica, R
Bayesian optimal designs Dokoumetzidis, for pharmacokinetic models: Sensitivity to uncertainty	, A., Aarons, L.	10.1080/1054 https://doi.org/ Journal of 23007015140 Journal of 23007015140 cal Statistics OZ.	15 It	2007 Yes	methodology Others	Bayesian optimal designs (ED and API orderle), Bayesian methods for incorporating pilor uncertainty,	Bayes	Bayes - Other	Yes	not applicable (the paper is related to pharmacokinetics but does not specify a therapeutic area or a particular drug)	not applicable		designs for pharmacokinetic studies	No	Commercial platform	Open source	MATLAB, MATLAB Optimization Toolbox
Bayesian evaluation of a Sweeney LM, Mr physiological-based Kuempel ED, Tr model of long-term kinetics of metal nanoparticles in rats.	MacCalman L, Haber LT, fran CL	10.1016/j.ytph https://doi.org/ Regulatory 2015.06.019 10.1016/j.ytph tooscology and cocclogy and 2015.06.012 pharmacology RTP	37	2015 Yes	application PBPK	Bayesian calibration, Bayesian oppulation analysis using Markov chain Monte Carlo (MCMC) simulation, probabilistic sensitivity analysis	Bayes, Sensitivity analysis	/ Bayes - calibration, UP - prob - basic sim	No	not applicable	not applicable	paper is related to drug therapy	not applicable (the paper is focused on toxicokinetic modeling of metal nanoparticles in rats, not drug therapy or vaccine development)		Commercial platform	Commercial platform with given parameters	- Matlab: Initial model development - MCSim (version 5.3.1): Model simulation - acsIX (version 3.0.2.1): Monte Carlo analysis - Microsoft Excet: Data visualization and comparison
Uncertainty and Variability In Risk Prioritization. Nicolas CI, Pea	arce RG. Honda GS. Dinallo	10.1093/hoxsol/ https://dal.org/ Toxicological Mr205 10.1093/hoxsol selences : an /4fr205 ficial journal of the Society of Toxicology		2019 Yes	methodology Others	Bayesian methods, Monte Carlo simulation, Markov Chain Monte Carlo (MCMC), uncertainty propagation	Uncertainty propagation, Bayes	Bayes - Other, UP - prob - basic sim	No	not applicable	not applicable	not applicable	not applicable (the paper is related to chemical risk assessment and not drug therapy or vaccine development)	Yes	Open source	Upon request to the authors	- R version 3.5.1 - R package "httk" version 1.10 - JAGS software version 4.3 - R packages "runjags" and "rigss"
Bayesian model selection validates a biokinetic model for zirconium processing in humans.	g S, Li WB, Greiter MB,	10.1186/1752 https://doi.org/ BMC systems 10.1186/1752 biology 0509-6-95 biology	24	2012 Yes	methodology PBPK	Bayesian modeling approach, Bayes factors, simulated annealing, MCMC sampling	Bayes	Bayes - Other	No	not applicable	not applicable	paper is related to radiation protection	related to radiation protection and biokinetic modeling, not drug therapy or vaccine development)		Commercial platform	Open source	MATLAB
A Novel Method for Nguyen HQ, Sta Assessing Drug Degradation Product Safety Using Physiologically-Based Pharmacokinet Models and Stochastic Risk Assessment	tamatis SD, Kirsch LE	10.1002/jps.24 https://doi.org/ Journal of 10.1002/jps.24 Pharmaceutic 452 Sciences	al 8	2015 Yes	methodology PBPK	Monte Carlo (MC) sampling, probabilistic sensitivity analysis	Sensitivity analysis	SA - simulation	Yes	Pain management or analgesis; ICD 11 code: Not explicitly mentioned but potentially related to codes under "Pain" or "Neurological disorders"		paper is related to drug therapy development, likely in preclinical or earl clinical stages, but the stage is not	The purpose of the PBPK model is to estimate human safe exposure levels for drug degradation products by y comparing human and rat exposure levels, focusing on target tissue exposure and l) leveraging physiological knowledge.	No	No	Upon request to the authors	R software with FME and deSolve packages

Bayesian networks for clinical decision support in lung cancer care.	Sesen MB, Nicholson AE, Banares- Alcantara R, Kadir T, Brady M	10.1371/journa https://doi.org/ PioS one Ipone.008234 10.1371/journa 9 2 2	140	2013 Yes	application ML	Bayesian Networks with directed acyclic graph and underlying joint probability distribution	Bayes	Bayes - ML		not applicable (the paper is about treatment selection and survival prediction in lung cancer care, not drug therapy development)	not applicable	not applicable	not applicable	No	Commercial platform	No	MatLab BNT toolbox WEKA 3 machine learning software Java implementation of CaMML PostgreSQL
Bayesian PBPK modeling using RStan/Torsten and Julia/ScML/Turing_JI.	Elmokadem A, Zhang Y, Knab T, Jordie E Gillespie WR	. 10 : 1002/psp4 . https://doi.org/ CPT. 19296 10 1002/psp4 . https://doi.org/ CPT. 19296 cs & systems pharmacology	9	2023 Yes	application PBPK	Bayesian inference Clobal sendalityl analysis, Merkor Chair Menine Caste (McAC) methods, No U-Turn Sampler (NUTS), Gelman-Rubin statistic	Sensitivity analysis, Bayes	Bayes - Other, SA - simulation		Neurological disorders; LD50.0 (Fragile X syndrome)	small molecule		not applicable (the paper focuses on methodology and tools for Bayesian PBPK modeling rather than a specific purpose like dose finding or subpopulation identification)	No	Open source	Open source	- R/Stan/Torsten - Julia/SciML/Turing.ji - cmdstanr - GlobalSenstivity.ji - MCMCChains.ji - StatsPlots.ji
An automated sampling importance resampling procedure for estimating parameter uncertainty.	Dosne AG, Bergstrand M, Karlsson MO	10.1007/s1092 https://doi.org/ Journal of 8-017-9542-0 10.1007/s109 pharmacokineti 28-017-9542-0 cs and pharmacodyna mics		2017 Yes	methodology Others	- Sampling Importance Resampling (SIR) - Covariance matrix - Bootstrap - Stochastic simulations and estimations (SSE)	basic frequentist	Freq - resampling	Yes	not applicable	not applicable	(guess)	Quantifying drug interactions Calculating the power of a prospective trial Proposing dose regimen adaptations Designing efficient clinical trials	No	Commercial platform	Upon request to the authors	PsN, NONMEM 7.3, RStudio 0.98 with R 3.1.2
Bayesian methods for uncertainty factor application for derivation of reference values.		10.1016/j.yrtph https://doi.org/ Regulatory 2016.05.018 10.1015/j.yrtph Toxicology and 2016.05.018 Pharmacology	21	2016 Yes	methodology PBPK	Bayesian methods, Bayesian Markov Chain Monte Carlo methods	Bayes	Bayes - Other	No	not applicable	not applicable	not applicable	Not applicable (the paper is related to environmental toxicity assessments, not drug therapy or vaccine development)	Yes	No	No	EPA's Benchmark Dose Software; specialized software for Monte Carlo simulation (not specified)
A Unified Probabilistic Framework for Dose- Response Assessment of Human Health Effects.	Chiu WA, Slob W	10.1289/ehp.1 https://doi.org/ Environmental 409385 10.1289/ehp.1 health 409385 perspectives	75	2015 Yes	review Others	Bayesian analysis Translating BMD confidence limits into distributions Parametric bootstrapping Monte Carlo (MC) simulation	Bayes, basic frequentist	Bayes - Other, Freq - resampling	- No	not applicable	not applicable		Not applicable (the paper is focused on chemical hazard assessment, not drug therapy or vaccine development)	Yes	Open source	Open source	PROAST software, R package (version 3.2.2)
A linear uncertain pharmacokinetic model driven by Liu process	Llu, Z., Yang, X.	10.1016/j.apm. https://doi.org/ Appled 2020.08.061 10.1016/j.agm. white-matical 2020.08.061 Modelling	37	2021 Yes	methodology Others	Uncertain differential equation	UDE/SDE		-Yes	not specified	not specified	ent (guess)	The purpose of the model is to provide a more accurate representation of or drug therapy development, particularly for intravenous infusions of anticancer drugs. It helps in determining steady-state drug concentrations and comparing different drug formulations.		No	No	Not mentioned (no information on software used is included in the paper)
	Brown LV, Coles MC, McConnell M, Ratushny AV, Gaffney EA	10.1007/s1092 https://doi.org/ Journal of 8-022-09819-7 10.1007/s109 pharmacokineti 28-022-09819-2 cs and pharmacodyna mics		2022 Yes	methodology PBPK	Markov Chain Monte Carlo (MCMC), Bayesian methodologies, Adaptive Covariance Monte Carlo	Bayes	Bayes - Other	Yes	not specified	not applicable		The purpose of the model is to calculate metrics such as total drug exposure in different patient populations, which is important for drug discovery and clinical trials.		No	Open source	SciPy, PINTS curve_fit or basinhopping
Safety Assessments Protective? A Toolbox and Workflow.	Middleton AM, Reynolds J, Cable S, Battaze MT, UH, Bevan S, Carmichael PL, Dent MP, Hatherell S, Houghton J, Kukie P, Lidden M, Malcomber S, Noci B, Park B, Patel H, Scott S, Sparham C, Walker P, White A	10.1093/hoxeof https://doi.org/. Toxicological Mac088 10.1093/hoxeof conficience an official journal of the Society of Toxicology	40	2022 Yes	methodology PBPK	Beyesian model (C max error distribution model), Monte Carl Markor chain algorithms, Leave-one-exposure-out strategy for calibration	Bayes	Bayes - Other	No	not applicable	not applicable		not applicable (the paper is focused on systems carefy assessments for con same goods, not drug therapy development)	No	No	Open source	- Stan (probabilistic programming language) - Python 3.8 - PyStan v2.19 - NumPy v1.19 - SoPy v1.6 - pandas v1.2 - matplottib v3.3
Biomarker-based calibration of retrospective exposure predictions of perfluoroctanoic acid A Stochastic Model	Vieira, V.M., Bartell, S.M.	10.1021/es405 https://doi.org/ Environmental 3736 10.1021/es405 Science and 3736 Technology 10.1109/CoDIT https://doi.org/ 9th 2023	10	2014 Yes 2023 Yes	methodology Others	Bayesian calibration, sensitivity analysis Probabilistic constraints: Chance-constrained model		SA - simulation, Bayes - calibration		not applicable Oncology; C00-D49		,	Not applicable (the paper is related to environmental exposure assessment, not drug therapy or vaccine development) The purpose of the model is to		No No	No No	Not mentioned (no software or programming languages are explicitly mentioned as being used in the study) Not mentioned (the paper
	Cabeza, A., Maestre, J.M.	58514.2023.1 10.1109/Cobit International Int			, 0, 0, 0, 0	Produites Consistency, Chalded-consistence include predictive approach, Normal distribution functions for stochastic variables							optimize drug dosing to minimize side effects while reducing tumor size, which aligns with dose finding and optimization in drug therapy development.				does not specify any software, packages, or programming languages used for the study)
A novel Bayesian strategy for the identification of spatially varying material properties and model validation: an application to static elastography	Koutsourelakis, Phaedon-Stelios	10.1002/nme.4 https://doi.org/ 261	47	2012 Yes	methodology Others	Bayesian techniques, model discrepancy analysis, MCMC sampling, Expectation-Maximization algorithm	Bayes, Sensitivity analysis	SA - analytical, Bayes - Other	No	not applicable	not applicable	not applicable	Not applicable (the paper is related to medical imaging and elastostatics, not drug therapy or vaccine development)	Yes	No	No	Not mentioned (the paper does not specify any software or programming languages used)
Bayesian evaluation of a physiologically based pharmacokinetic (PBPK) model for perfluoroctane sufforate (PFOS) to characterize the interspecies uncertainty between mice, rats, monkeys, and humans: Development and performance verification	Chou, WC., Lin, Z	10.1015/j.envis https://doi.org/. Environment nt.2019.03.05 10.0105/j.environment nt.2019.03.05 12.019.03.05 International nt.2019.03.05	72	2019 Yes	application PBPK	Beyesian Herarchical statistical enabylis using Merkov chair Monte Carlo (MacKov attain Monte Carlo (MacKo) emission. Pre orderaturulons for population variances and unknown error, Delayed Rejection Adaptive Metropolis (DRAM) sampling, sensitivity analysis	analysis	Bayes - hierachical, SA - simulation	No	not applicable	not applicable		not applicable (the paper is related to toxicokinetic modeling for risk assessment, not drug therapy or vaccine development)	No	Open source	Open source	R language (version 3.5.2) R package "mrgsolve" R software package "FME"

Part	Bayesian inference informed by parame subset selection for minimal PBPK brain	er Reich BJ	10.1098/rsta.2 https://doi.org 024.0219 10.1098/rsta.2 024.0219	Philosophical transactions. Series A, Mathematical, physical, and engineering sciences	1	2025 Yes	methodology PB	BPK	Bayesian inference, Markov chain Monte Carlo (MCMC) techniques, Delayed Rejection Adaptive Metropolis (DRAM), Posterior Predictive Distribution (PPD), Credible intervals, Prediction intervals	Bayes	Bayes - Other	Yes	not specified	biologics	(guess: preclinical c	The purpose of the model is to or refine the subset of identifiable parameters, quantify uncertainties, and enhance model predictions for antibody therapeutics in the brain.	No	Commercial platform	No	MATLAB, MCMC toolbox, ode15s
Part	Physiologically Basi Pharmacokinetic/Ph odynamic Modeling Cumulative Risk Assessment for N-N	d Blancato, J.N., Dary, C.C.	0-12-374367- 10.1016/B978 1.00073-2 0-12-374367-	8: Handbook of Pesticide	3	2010 Yes	application PB	врк	Bayesian Markov chain Monte Carlo analysis Fuzzy simulation approach Sensitivity analysis Variability analysis	analysis, Bayes, Uncertainty		No	not applicable	not applicable	not applicable	related to pesticide exposure and risk assessment, not drug therapy		No	No	Not mentioned
Section Sect	modeling of dynami contrast-enhanced magnetic resonance	Dietrich, O., Ingrisch, M.	6560/ah3a5a 10.1088/1361	1- Medicine and	5	2019 Yes	application Oti	hers				Yes	Breast cancer; C50	not specified	not specified		No	Open source	Open source	SciPy, Stan, scikit-learn
Part	Bayesian Analytical Methods in Cardiov Clinical Trials: Why, and How	Heuts, S., Kawczynski, M.J., Sayed, A., Urbut, S.M., Abuquerque, A.M., Mandroli Vhen, J.M., Kaul, S., Harrell, F.E., Gabrio, A., Brophy, J.M.	10.1016/j.cjca. https://doi.org s, 2024.11.002 10.1016/j.cjca 2024.11.002	L/ Canadian a. Journal of Cardiology	6	2025 Yes	review Oti	hers	Bayesian hierarchical meta-regression	Bayes	Bayes - hierachical	Yes		small molecule	(guess: Phase III o	r discusses Bayesian analysis in cardiovascular clinical trials but does not specify a pharmacometric model for drug	No	Open source	Open source	brms), Python (pystan, pymc), Julia (Turing.jl), JASP, SPSS,
Part	integration for an in vitro-in vivo correlat	Jacobs, T., Gasparini, M.	01700263 10.1002/bimj.	1/ Biometrical 1.2 Journal	5	2019 Yes	methodology Oti	hers	Bayesian hierarchical modeling	Bayes	Bayes - hierachical	Yes	paper does not specify the therapeutic area of provide an ICD 11	,	paper discusses various stages but does not clearly state a specific	pharmacometric model is to optimize the exposure of a compound during drug development, particularly for formulations with extended release or lag in absorption, and to serve as a surrogate for in vivo	No	Open source	Open source	- R package nlmixr - Software package Stan
Section of the Control of the Cont	Kriging Model Varia High-Fidelity Uncert Quantification in Dy	ts for S., Adhikari, S., Chowdhury, R. inty	. 10.1007/s1183 https://doi.org 1-016-9178-z 10.1007/s118 31-016-9178-:	E. Computational Methods in Engineering. State of the Art	149	2017 Yes	methodology Oti	hers	Kriging, Co-Kriging, Universal Kriging based on marginal likelihood estimator) - Monte Carlo Simulation (MCS) - Stochastic Kriging for addressing noise in uncertainty	Uncertainty propagation		No	not applicable	not applicable	not applicable	related to engineering and materials science, not drug	No	No	No	does not specify any software.
Service of colors of the Color of Service of Colors of Service of Color of Service of Colors of Service of Color of Service of	identification for Tur systems on stations	ng Chandrasekhar, Madzvamuse, Anotida		5. Mathematical 22. Blology, A Journal Devoted to Research at the Interface of the Life and Mathematical	27	2019 Yes	methodology Otl	hers	Bayesian framework, Markov chain Monte Carlo (MCMC)	Bayes	Bayes - Other	No	not applicable	not applicable	not applicable	related to drug therapy or vaccine		No	Open source	module from Python Standard
Interclating chapter for Schools and goldstade (Pathles Righ, Remark Plance) Tagged polyments Tagged Replace (Pathles Righ, Remark Plance) Tagged Replace (Pa		of Kennedy, Marc C., O'Hagan, Anthony	0000 00004 10 1111/1467	Z- Royal Statistical Society. Series B. Statistical	3972	2001 Yes	methodology Otl	hers				Yes	paper discusses pharmacokinetic modeling but does not specify a therapeutic		not specified	dose finding	No	No	No	does not specify any software
A deep-learning and code of data assertation for or standards by minimal and the proper or stand	uncertainty analysis computationally exp models using optim and radial basis fun	for Shoemaker, Christine, Regis, Rommel, ensive Wild, Stefan, Mugunthan, Pradeep ation			119	2008 Yes	methodology Oti	hers	Bayesian calibration, surrogate modeling (RBF interpolation)	propagation,	surrogate, Bayes -	No	not applicable	not applicable	not applicable	not applicable	Yes	Open source	Open source	MATLAB
valdation, and unordrainty (authorization of cluster) (authorization) (authori	chaos-based metho efficient Bayesian calibration of uncert computational mode	l for in s.	5977.2013.82 10.1080/1741 3411 5977.2013.82 3411	1 Problems in 2 Science and Engineering					Markov Chain Monte Carlo (MCMC), Karhunen-Loeve expansion	Uncertainty propagation	UP - prob - surrogate			not applicable	not applicable		No	No		
A dep-learning-based surgoals model for data surgoals model for government of propagation surgoals model for government of gover	validation, and unce quantification of diff interface models of	tainty Serge, van der Zee, Kristoffer G., Oden, .	1 5.012.0505.0 10.1007/s002	2 Mathematical	110	2013 Yes	methodology Oti	hers	.,	Bayes	Bayes - calibration	No	not applicable	not applicable	not applicable	focused on tumor growth modeling and does not address drug therapy or vaccine	Yes	No	No	QUESO, DAKOTA
Bayesian calibration of multistate solutions and postionable most applicable on applicable of a postionation of multistate solutions. A dynamic evolution by successful for the for structures with the for a successful finite resolution for the form for structures with the resolution for structures with the resolution for structures with the resolution assignment of the resolution of the related to structures with the related to structure with the related to structure with the related to structures with the related to structure with the related to structures with the related to structure with the related to structures with the related to structure with the related to stru	A deep-learning-ba surrogate model for assimilation in dyna	data	020 100456 10 1016/i icn	2 Computational	268	2020 Yes	methodology Oti	hers	Surrogate modeling			No	not applicable	not applicable	not applicable	Not applicable (the paper is related to geological modeling and subsurface flow prediction, not drug therapy or vaccine	No	No	No	AD-GPRS, CNN-PCA, SGeMS
scheme for structures with A 2019 0.1 out 1 10.1016/LCM Methods in propagation interval uncertainties by programment of the structures of the structure of the	multistate stochastic	of Pratola, Mathew T., Chkrebtii, Oksana	or.org/stable/4	ist Statistica 4 Sinica	7	2018 Yes	methodology Oti	hers	- Markov chain Monte Carlo (MCMC) algorithm	Uncertainty	UP - prob -	No	not applicable	not applicable	not applicable		Yes	Open source	Open source	
	scheme for structure interval uncertaintie using bidirectional	s with by	A 2040 O4 044 10 1016/101	M Methods in LL Applied Mechanics and	35	2019 Yes	methodology Otl	hers	- Interval finite element method (IFEM) - Collocation methods (CM)		surrogate, UP - non	No	not applicable	not applicable	not applicable	related to structural dynamics and not drug therapy or vaccine		No	No	software, packages, or programming languages are mentioned in the paper for estimating the uncertainty

Bayesian inference and uncertainty quantification for medical image reconstruction with Poisson data.	Zhou, Qingping, Yu, Tengchao, Zhang, Xiaoqun, Li, Jinglai	arXiv:1903.020 SI 75 https://doi.org/ 10.48550/arXiv .1903.02075	AM Journal 23 Imaging iences	2020 Yes	methodology Others	Bayesian inference	Bayes	Bayes - Other	No	not applicable	not applicable	not applicable	Not applicable (the paper is related to medical image reconstruction, not drug therapy or vaccine development)	No	No	No	Not mentioned (the paper does not specify any software, packages, or programming languages used)
Bayesian calibration, validation and uncertainty quantification for predictive modelling of tumour growth: a tutorial.	Colls, Joe, Connor, Anthony J., Paczkowski, Marcin, Kannan, Pavitra, Pitti Francis, Joe, Byrne, Helen M., Hubbard, Matthew E.	38-017-0258-5 Bj Dc Pc Rr th th M	illetin of 45 thematical lology. A umal voted to search at e Interface of b Life and thematical iences	2017 Yes	methodology Others	Bayesian calibration, Markov chain Monte Carlo (MCMC), ribust Bayesian analysis	Bayes	Bayes - calibration	Yes	Cancer (2A00-2F9Z)	not applicable		The purpose of the model is to guide patient therapy via prediction, potentially involving patient-specific predictions for therapy planning. This could include identifying optimal treatment strategies or predicting patient responses to therapy.		Commercial platform	Upon request to the authors	Metlab
A local hybrid surrogate- based finite element tearing interconnecting dual-primal method for nonsmooth random partial differential equations.	Eigel, Martin, Gruhlke, Robert	M	emational 4 umal for merical thods in gineering	2021 Yes	methodology Others	Surrogate modeling, stochastic Galerkin method, multilevel Monte Carlo (MLMC)	Uncertainty propagation	UP - prob - surrogate	No	not applicable	not applicable	not applicable	not applicable	Yes	Open source	Open source	- ALEA python library - FEniCS - UMFPACK - Custom implementation for discrete random coordinate spaces
A sequential calibration and validation framework for model uncertainty quantification and reduction.	Jiang, Chen, Hu, Zhen, Liu, Yixuan, Mourelatios, Zasimos P., Gorachi, David, Jayakumar, Paramsothy	2020.113172 A _E	thodo in	2020 Yes	review Others	Direct Bayesian Calibration (DBC) Kennedy and O'Hagan (KOH) framework. Optimization-Based Calibration (DBC) Sequential Calibration and Validation (SeCAV) framework. Gaussian Process (GP) surrogate modeling Bayesian inference	Bayes, Uncertainty propagation	Bayes - calibration, UP - prob - surrogate	No	not applicable	not applicable	not applicable	not applicable	No	No	No	Not metioned
A machine learning-based probabilistic computational framework for uncertainty quantification of actuation of clustered tensegrity structures.	Ge, Yipeng, He, Zigang, Li, Shaofan, Zhang, Liang, Shi, Litao		mputational 5 schanics	2023 Yes	application Others	- Surrogate modeling - Monte Carlo simulation - Global Sensitivity Analysis (GSA)	Sensitivity analysis, Uncertainty propagation	UP - prob - surrogate, SA - simulation	No	not applicable	not applicable	paper is about	Not applicable (the paper is related to mechanical engineerin s and robotics, not drug therapy or vaccine development)	a	No	No	Not melioned
uncertainty in viscosity	Zio, Souleymane, da Costa, Henrique F., Guerra, Gabriel M., Paraizo, Paulo L. B., Camata, Jose J., Elias, Renato, V., Coutinho, Alvaro L. G. A., Rochinha, Fernando A.	2018.08.023 10.1016/j.cma M 2018.08.023 Ag M	mputer 7 thods in piled schanics and gineering	2018 Yes	methodology Others	Bayesian framework Herarchical Bayesian calibration Model discrepancy analysis Marginalized Gaussian Approximation likelihood Markov Chain Monte Carlo (MCMC) methods		y Bayes - hierachical, SA - analytical, Freq likelihood		not applicable	not applicable	not applicable	Not applicable (the paper is related to geological phenomena and sediment transport, not drug therapy or vaccine development)	Yes a	Commercial platform	No	DAKOTA library Residual Based Variational Multiscale Method (RBVMS) Large Eddy Simulation (LES)
Bayesian calibration for large-scale fluid structure interaction problems under embedded/immersed boundary framework.	Cao, Shunxiang, Huang, Daniel Zhengyu	916 10.1002/nme. Jo 6916 No M	emational 12 urnal for merical ethods in gineering	2022 Yes	methodology Others	Bayesian calibration, Kalman inversion (including unscented Kalman filter)	Bayes	Bayes - calibration	No	not applicable	not applicable	not applicable	Not applicable (the paper is not related to drug therapy or vaccine development)	Yes e	Open source	Open source	AERO-Suite 2, Julia
A Sumpate-based Variance Reduction Approach to Multification Approach to Multification Vincentary Quantification with Applications in Automotive Systems.	Yang, Hang	dx.doi.org/10.7 https://dx.doi.org/ 302/4635 gg/10.73802/46 Aj 35	Govern LLC, 1	2022 Yes	methodology Others	- Monte Carlo (MC) method - Generalized Polynomial Chaos (gPC) - CVPC (multifieldly variance reduction method integrating gPC with MC) - Surrogate methods: response surface models, metamodels, emulators - Gaussian process models - Low-rank decomposition methods - Sparse grid interpolation methods - Reduced basis approximations - Neural networks - Variance-based global sensitivity analysis using total-effer Sobol redices	Uncertainty propagation, Sensitivity analysis	UP - prob - sumogate, SA - simulation, SA - analytical	No	not applicable	not applicable	not applicable	Not applicable (the paper is related to automotive systems and uncertainty quantification, not drug therapy or vaccine development)	Yes	No	No.	Not mentioned the paper does not specify any software, packages, or programming languages used in the study)
An efficient Bayesian uncertainty quantification approach with application to \$k\$-\$lomega\$- \$lgamma\$ transition modeling.	Zhang, Jincheng, Fu, Song	10.1016/j.com https://doi.org/ Cc pfluid.2017.11. 10.1016/j.com Fl 007 pfluid.2017.11. In 007 Jd	mputers \& 31 iids. An emational umai	2018 Yes	methodology Others	Bayesian calibration, adaptive high-dimensional model representation (HDMR), stochastic collocation (SC) based o generalized polynomial chaos (gPC), Bayesian inference		Bayes - calibration, UP - prob - surrogate	No	not applicable	not applicable	not applicable	Not applicable (the paper is related to fluid dynamics and aerodynamics, not drug therapy or vaccine development)	Yes	No	No	- R package: MHadaptive - R package: GPC
A novel sensitivity analysis method for multi-input-mult output structures considering non- probabilistic correlations.	Ouyang, Heng, Zhou, Hongbin, Wang, I- Haoyang, Duan, Shuyong, Han, Xu		all and a lan	2024 Yes	methodology Others	Non-probabilistic variance propagation equation Dimensional normalization method Vector projection method Non-probabilistic sensitivity analysis	Uncertainty propagation, Sensitivity analysis	UP - non prob, SA - analytical	No	not applicable	not applicable	not applicable	not applicable	Yes	No	No	Monte Carlo Simulation (MCS)
Bayesian calibration of imperfect computer models using physics-informed priors.	Spitieris, Michail, Steinsland, Ingelin		obino	2023 Yes	methodology Others	Bayesian calibration, model discrepancy analysis, Hamiltonian Monte Carlo sampling, physics-informed priors, Gaussian processes	Sensitivity analysis, Bayes	Bayes - calibration, SA - analytical	No	not applicable (the paper is related to cardiovascular modeling and not drug therapy or vaccine development)	not applicable	not applicable	not applicable	Yes	Open source	Open source	STAN (probabilistic programming language), Hamiltonian Monte Carlo (HMC) sampling, No U-Tum Sampler (NUTS)

An active machine learning Ghorbani, M., Boley, M., No approach for optimal design of magnesium alloys using Bayesian optimisation	skashima, 10.1038/s4159 https://doi.org/ Scientific 8-024-59100-9 10.1038/s415 Reports 98-024-59100- 9	7 2024 Yes	application ML	Probabilistic Gaussian process regressor model Bayesian optimisation Acquisition function (upper confidence bound)	Bayes	Bayes - Other	No r	not applicable no	t applicable	not applicable	not applicable	No	Open source	Open source	Web tool with graphical user interface (GUI) GitHub
Bayesian meta-analytical Bujkiewicz, S., Thompson, methods to incoporate multiple surrogate endpolits in drug development process	J.R., Riley, 10.1002/sim.6. https://doi.org/ Statistics in 776 10.1002/sim.6. Medicine 276	26 2016 Yes	methodology Others	Bayesian multivariate meta-analysis, Markov chain Monte Carlo (MCMC) simulation, Bayesian credibility intervals, non-informative prior distributions	Bayes	Bayes - hierachical	Yes I	Neurology; 8A40 no	it applicable	paper is related to drug therapy development, likely in Phase II or III,	The purpose of the model is to evaluate surrogate endpoints to predict clinical outcomes in drug therapy development, specifically to reduce uncertainty by including it multiple surrogate endpoints.		Open source	Open source	- Geogle Collaboratory notebook WinBUGS, R. RZWinBUGS package, OpenBUGS, RZOpenBUGS
Bayesian synergistic metamodeling (BSM) for physical information infused data-driven metamodeling	eng 10.1016/j.cms. https://doi.org/ Computer 2023.116680 10.1016/j.cma. Methods in 2023.116680 Applied Mechanics and Engineering	5 2024 <mark>Yes</mark>	methodology Others	Bayesian synergistic metamodeling (BSM)	Bayes	Bayes - hierachical	No r	not applicable no	et applicable	not applicable	Not applicable (the paper is not related to drug therapy or vaccine development)	Yes	No	No	Not mentioned
Bood-brain barrier Tong, X., Weng, D., Ding.) penderation prediction enhanced by uncertainty estimation Huang, J., Jiang, H., Zheng estimation	r., Xu, T., 1-022-00619-2 10 1186/s133 Cheminformatic	28 2022 <mark>Yes</mark>	methodology ML	Entropy, MC-dropout, Multi-Initial, FPaDiss, LatentDist, Random method, modZ-weighted average algorithm	Bayes	Bayes - ML	5 5 6 1	-Therapeutic area: sm Central Nervous System (CNS) diseases and metastatic brain tumors - ICD 11 code: 8A40 (Altheimer's disease), 2C10 (Malgnant neoplasm of brain)	nall molecule	early-stage drug discovery (guess)	The purpose of the model is to enhance the early drug discovery process by mpldy exploring bloob brial harmer permeability (BBB) in silco, facilitating high-throughput screening and lead optimization of BBB prindecules for CNS diseases and metastatic brials tumors.	/ d-	Open source	Open source	- RDKit toolkit - Epik module of Maestro - sciki-learn (for RF and MLP) - TensorFlow or PyTorch (for GROVER and Attentive PP) - Python (for inplementation of machine learning models and uncertainty estimation methods)
Assessing the Impact of Tissue Target Concentration Data on Uncertainty in In Vivo Target Coverage Predictions	, Tolsma, J.E., 12126 10.1002/psp4. Pharmacometri	11 2016 <mark>Yes</mark>	methodology Others	Global Senstivity Analysis (GSA) using Partial Rank Correlation Coefficients (PRCCs) and Derivative-based Global Sensitivity Measure	Sensitivity all analysis	SA - analytical	1	- Rheumatoid arthritis: bio M05-M06 - Crohn's disease: K50.0 - Psoriasis: L40.0	ologics	Preclinical (guess)	The purpose of the model is to predict target coverage, which is essential for drug therapy development by helping to establish appropriate doses and ensure efficacy.	Yes	Commercial platform	No	J2 Dynamic Modeling and Optimization Software (RES Group, 2016)
A Bayesian approach for determining the no effect concentration and hazardous concentration in ecotoxicology	10.1016/j.ecoe https://doi.org/ Ecotoxicology nv.2009.09.01 10.1016/j.ecoe and 2 nv.2009.09.01 Environmental 2 Safety	70 2010 <mark>Yes</mark>	methodology Others	Bayesian modeling, Markov chain Monte Carlo (MCMC) methods, Bayesian credibility intervals	Bayes	Bayes - Other	No r	not applicable no	et applicable	not applicable	Not applicable (the paper is related to ecotoxicology and environmental risk assessment, not drug therapy or vaccine development)	No	Open source	Open source	WinBUGS, BurrliOz
A Probabilistic Method for Species Sensitivity Distributions Taking into Account the Inherent Uncertainty and Variability of Effects to Estimate Environmental Risk	owack 10.1002/seam https://doi.org/ Integrated 1334 10.1002/seam. Environmental 1334 Assessment and Management	60 2013 <mark>Yes</mark>	methodology Others	Probabilistic sensitivity analysis, Monte Carlo simulations, frequentist statistical methods (95% confidence intervals)	Sensitivity analysis, basic frequentist	SA - simulation	No r	not applicable no	t applicable	not applicable	Not applicable (the paper is related to environmental risk assessment, not drug therapy or vaccine development)	No	No	No	R (R Development Core Team 2008)
A physiologically-based kinetic (PBK) model for work-related disocyanate exposure: Relevance for the design and reporting of biomonitorin studies	A Pronk, R 10.1016/j.envi https://doi.org/ Environment emmeulen, K nt.2023.10791 10.1016/j.envi International nt.2023.10791 Z	4 2023 <mark>Yes</mark>	methodology PBPK	Global sensitivity analysis using extended Fourier Ampittude Sensitivity Test (eFAST) Monte-Carlo simulation	e Sensitivity analysis	SA - analytical, SA - simulation	No r	not applicable no	t applicable	not applicable	not applicable (the paper is related to occupational exposure assessment and not drug therapy or vaccine development)	No y	Commercial platform	No	MCSim (version 6.2), R package PKSensi (version 1.2.3)
A Musikhodai Ciraph Omer Akgüller, Mehmet Ali Neural Nebende Fannework Cloca for Parkinson's Disease Therapeutic Discovery	Bakx, Gabriela 10.3390/jm26 international 10.04453 thres://doi.org/ journal of 10.3390/jm26 molecular 10.3390/jm26 molecular 10.4453 sciences	2025 Yes	application ML	Monte Carlo dropout for spitteris uncertainty estimation, absorber uncertainty estimation to absorber uncertainty estimation through predictive means and variance; scaling of uncertainty scores by a factor of 0.5.	Bayes	Bayes - ML		Neurology/Neurodege sm nerative diseases; G20	nali molecule	preclinical (guess)	The purpose of the model is to identify and prioritize multi-target drug repurposing candidates for Parkinson's disease by predicting drugs that can target multiple critical proteins involved in PD pathogenesis, such as lyososmal dysfunction, milochondrial impairment; synaptic disruption, and neuroinflammation.		No	No	Cytoscape (v3.4.0), clusterMaker/2 plugin
A framework for 2-stage global sensitivity analysis clambia P Androulakis of GastorPuta M compartmental models	a Forder, 10.1007/s1092 <u>bttts://doi.org/</u> Journal of 8-018-9573-1 10.1007/s1092 Pharmacokineti 22:418-9323-1 ca and Pharmacockyna mics	18 2018 <mark>Yes</mark>	methodology PBPK	Global sensitivity analysis, Morris method, Sobofs sensitivity analysis	Sensitivity analysis	SA - simulation		- Acetaminophen: Pain sm relief and fever reduction (no specific CCD 11 code mentioned) - Risperidone: - Psychiatric disorders (ICD 11 code: 6A20 - Schizophrenia) - Atenolot: Cardiovascular diseases (ICD 11 code: 10 - Esential typeridensian) - Furosemide: Cardiovascular	molecule	not specified	The purpose of the model is to inform model structure and understand physiological mechanisms influencing interchanisms influencing which is new which is nelvant to drug therepy development by analyzing how parameterization affects drug behavior.	No	Commercial platform	No	GastroPus, Autolt, MATLAB R2017a
A first-generation physiologically based pharmacoknetic (PBPK) model of alphatocopherul in human influenza vaccine acjuvanti	J Mitsus 10.1016/j.ytph https://doi.org/ Regulatory 2015.02.005 10.1016/J.yttbh Troxcology and 2015.02.005 Pharmacology	17 2015 <mark>Yes</mark>	application PBPK	Monte Carlo simulations with Latin hypercube sampling	Uncertainty propagation	UP - prob - basic sim	Yes I	diseases (CD 11 code: 110 - Essential hypertension) infectious diseases; bid B34.9 (influenza, unspecified)	ologics	(guess: preclinical o	The purpose of the model is to restimate the biodistribution of or- tocopherol in humans following a single dose of squalene- containing adjivant, which informs regulatory risk-benefit analyses and explains immunodynamics.		Commercial platform	No	Vensim Professional ®

A Computational Workflow for Probabilistic for Probabilistic Cuantitatives in Vitro to in Vivo Extrapolation	Nicole C Kleinstreuer, Zhichao Liu, Georg Loizou, Kevin Mcnally, Alex Hogg	2018.00508	10.3389/fphar 2018.00508	• Pharmacology	24	2018 Yes	methodology	РВРК	Global sensitivity analysis (CSA) Approximate Bayesian Computation (ABC) Markov Chain Monte Carlo (MCMC) simulation	Sensitivity analysis, Bayes	SA - simulation, Bayes - Other	Yes		not applicable	not specified (the paper is related to drug therapy development, but the stage is not clearly stated or inferred from context)	assessments rather than drug	Yes	Open source	No	- acsiX TM software - R language - RStudio - deSolve package - Sensitikly package - senshape package - ggpti2 package - md2c package - md2c package - PROAST version 65.0 - R version 3.4.1
A Combined Estimation and Multi-Parametric Mode Predictive Control Approach for Intravenous Anaesthesia	Ioana Nascu, Romain S C Lambert, Efstratios N Pistikopoulos	10.1109/SMC 2014.697429	c. https://doi.org 95 10.1109/SMC 2014.6974293	I IEEE International Conference on Systems, Man and Cybernetics	7	2014 Yes	application	Others	Global sensitivity analysis, specifically Sobor's method of sensitivity indices, which is a variance-based approach using ANOVA decomposition.	Sensitivity analysis	SA - Other	Yes	Anaesthesia; ICD 11 code not explicitly mentioned but related to anaesthesia	small molecule	paper is related to drug therapy but	The purpose of the pharmacometric model is to control the depth of anesthesia e by estimating key pharmacokinetic and pharmacodynamic parameters and using these estimates in a model predictive control strategy.	Yes	No	No	Not mentioned (the paper does not specify any software or programming languages used)
A Bayesian population PBPK model for multiroute chloroform exposure	Yuching Yang, X U Xu, Panos G Georgopoulos	10.1038/jes.2 09.29	https://doi.org 20 10.1038/jes 21 09.29	Suppose Science and Environmental Epidemiology	41	2009 Yes	methodology	РВРК	Bayesian hierarchical modeling, Bayesian calibration, Markov chain Monte Carlo (MCMC) simulation	Bayes	Bayes - hierachical, Bayes - calibration	No	not applicable	not applicable	not applicable	Not applicable (the paper is related to toxicological assessment of chloroform exposure, not drug therapy or vaccine development)	No	Commercial platform	No	Matlab (The Mathworks Inc, 2008)
and 309 Data in Search of a Robust Biotransformation Indicator		-		Environmental Science and Technology	39	2016 Yes	application	Others	Bayesian calibration, Markov chain Monte Carlo sampling		Bayes - calibration	-	not applicable	not applicable	not applicable	related to environmental science and chemical biotransformation, not drug therapy or vaccine development)	No	No	No	not mentionned
Calibration experimental design considering field response and model uncertainty	Zhen Hu, Dan Ao, Sankaran Mahadevan	1 -	-		44	2017 Yes	methodology	ML	Bayesian calibration Model discrepancy analysis Sumgate modeling (Krigling) Global sensitivity analysis (GSA) Data compression techniques (low-rank data compression)	Bayes, Sensitivity analysis, Uncertainty propagation	Bayes - calibration, UP - prob - surrogate, SA - Other	No	not applicable	not applicable	not applicable	Not applicable (the paper is not related to drug therapy or vaccine development)	Yes	No	No	Abaqus for finite element simulations, MATLAB Kriging toolbox
Using Bayesian Network with Features Extracted from Multiple Modalities of	Jisu Hu, Wenbo Wu, Bin Zhu, Huiting Wang, Renyuan Liu, Xin Zhang, Ming Li, Yongbo Yang, Jing Yan, Fengnan Niu, Chuanshuai Tian, Kun Wang, Haiping Yu Weibo Chen, Suiren Wan, Yu Sun, Bing Zhang	и,		PLoS ONE	23	2016 Yes	application	ML	Bayesian Network, K2 algorithm, maximum likelihood estimation, leave-one-out analysis, receiver operating characteristic (ROC) analysis, posterior probability computation	Bayes	Bayes - ML	No	not applicable	not applicable	not applicable	not applicable (the paper is related to diagnostic imaging and grading of gliomas, not drug therapy or vaccine development)	No	No	No	- K2 algorithm - JMP software - LCModel
Characterization and Management of Uncertainties in Toxicological Risk Assessment: Examples from the Opinions of the European Food Safety Authority	Alberto Mantovani	-	-	Methods in molecular biology	7	2018 Yes	review	Others	Expert elicitation of probabilistic distributions . Uncertainty propagation in the from of Benchmark dose (BMD) approach with confidence intervals (95% confidence limits)	Uncertainty propagation	UP - Other	No	not applicable	not applicable	not applicable (the paper is about toxicological risk assessment of chemicals, not drug therapy or vaccine development)	Not applicable (the paper is related to toxicological risk assessment, not drug therapy or vaccine development)	No	No	No	Not mentioned (the paper does not specify any software used for uncertainty quantification)
Monte Carlo simulation for the prediction of postprandial glucose under uncertainty in type 1 diabetes mellitus	R Calm, M García-Jaramillo, J Bondia, M Sainz, J Vehí Frenklach, Michael, Packard, Andrew.	Α -	-	Comput. Methods Programs Biomed.	25	2011 Yes	methodology		Monte Carlo simulation (MCS), Modal interval analysis (MA) - Bound-to-bound data collaboration (B2B): deterministic	propagation		Yes	Endocrinology; E10		paper is related to insulin therapy optimization but does not specify a stage of drug development)	The purpose of the model is to optimize insulin therapy by predicting glucose excursions under uncertainty, which can lead to safer and more robust insulin infusion algorithms.		Commercial platform	No	Borland C++ Builder (version 6.0), C/C++ programming language
and deterministic frameworks of uncertainty quantification.	Garcia-Donato, Gonzalo, Paulo, Rui,		-	Journal on Uncertainty Quantification SIAM/ASA.I	67	2016 Yes	methodology		Bound-to-bound data collaboration (K2E): Geterministic approach using semidefilinite programming algorithms: Bayesian calibration and prediction (BCP): statistical and Bayesian approach Polynomial chaos and Gaussian process emulation are the	.,	Bayes - calibration UP - prob -	NO	,	not applicable	not applicable	not applicable (the paper is not related to drug therapy or vaccine development) Not applicable (the paper is not		No Open source	No	algorithm) R package DiceKriging
	NE Owen, P Challenor, P P Menon, S Bennani	-	-	Uncertain. Quantification	6/	2018 Yes	methodology	Others	Polynomial chaos and caussian process emulation are the uncertainty quantification methods used in this paper. These are both surrogate-based methods used to approximate expensive simulators. Additionally, Monte Carlo simulation is mentioned as a conventional approach for tasks such as sensitivity analysis and calibration.	propagation, Sensitivity	surrogate, SA - simulation	No	пот аррисавіе	пот аррисавіе	not applicable	Not applicable (the paper is not related to drug therapy or vaccine development)	Yes	Open source	No	R package DiceKnging
Computational algorithm for solving drug pharmacokinetic model under uncertainty with nonsingular kernel type Caputo-Fabrizio fractional derivative	Nesrine Harrouche, Shaher Momani, Shatha Hasan, Mohammed Al-Smadi	-	-		33	2021 Yes	methodology	Others	Fuzzy computations	Uncertainty propagation	UP - non prob	No	not applicable	not applicable	not specified	Understanding drug absorption and extraction rates under uncertainty, considering factors like bioavailability and physiological characteristics.	Yes	No	No	Not mentioned (the paper does not specify any software, packages, or programming languages used)
Computational Approaches for Developing Informative Prior Distributions for Bayesian Calibration of PBPK Models	Jimena L Davis, Rogelio Tomero-Velez, f Woodrow Setzer	R -			4	2012 Yes	methodology	РВРК	Bayesian statistical methods, Bayesian calibration	Bayes	Bayes - calibration	No	not applicable (the paper does not specify a therapeutic area or ICD 11 code)		not applicable	not applicable (the paper is related to risk assessments rather than drug therapy or vaccine development)	, No	No	No	Not mentioned (the paper does not specify any software or programming languages used)
uncertainty in the ecotoxicological impact assessment of down-the- drain products	Mélanie Douziech, Rik Oldenkamp, Rosalie Van Zelm, Henry King, A Jan Hendriks, Anne-Sophie Ficheux, Mark A Huijbregts, Olga-Ioanna Kalantzi			Environment International	18	2019 Yes	methodology		Two-dimensional Monte Carlo (2D MC) simulation, Spearman correlation coefficients, Uncertainty and variability ratios (UR and VR)			No	not applicable	not applicable	not applicable	related to ecotoxicological impact assessment of down-the-drain products, not drug therapy or vaccine development)		No	No	R
Considerations for Improving High to Low Dose Extrapolation for Regulatory Risk Assessment	Lauren Zeise				0	2007 Yes	review	PBPK	- Probability distributions - Hierarchical Bayesian approach	Bayes	Bayes - hierachical	No	not applicable	not applicable	not applicable	not applicable (the paper is related to environmental risk assessment, not drug therapy or vaccine development)	No	No	No	Not mentioned (the paper does not specify any software used for uncertainty quantification)
Constructing Time- Resolved Species Sensitivity Distributions Using a Hierarchical Toxico Dynamic Model	Guillaume Kon, Kam King, Marie Laure Delignette-Muller, Ben J Kefford, Christophe Piscart, Sandrine Charles		-	Environmental Science and Technology	22	2015 Yes	application	Others	Bayesian hierarchical modeling, uncertainty propagation, shrinkage behavior	Uncertainty propagation, Bayes	Bayes - hierachical, UP - Other	No	not applicable	not applicable	not applicable	Not applicable (the paper is related to environmental risk assessment, not drug therapy or vaccine development)	No	Open source	Open source	Stan via RStan

Dealing with Measuremen Uncertainties as Nuisance Parameters in Bayesian Model Calibration \ast	Kellin Rumsey, \dagger \ddagger, Gabriel - Huerta \ddagger, Justin Brown \ddagger, Lauren Hund \dagger	-	SIAM/ASA J. Uncertain. Quantification	7	2020 Yes	methodology Others	Bayesian Model Caibration (BMC), model discrepancy analysis, moment penalization prior	Sensitivity analysis, Bayes	SA - analytical, Bayes - calibration	No	not applicable	not applicable	not applicable	not applicable	No	No	No	Not mentioned (the paper does not specify any software, packages, or programming languages used)
Deep Gaussian Processer for Calibration of Compute Models (with Discussion) *	Sébastien Marmin, Maurizio Filippone -	-	Bayesian Analysis	13	2022 Yes	methodology Others	Bayesian calibration, model discrepancy analysis, surrogate modeling, stochastic variational inference, deep Gaussian processes, Gaussian processes with random feature approximations	Sensitivity analysis, Uncertainty propagation, Bayes	SA - analytical, Bayes - calibration, UP - prob - surrogate	No	not applicable	not applicable	not applicable	Not applicable (the paper is not related to drug therapy or vaccine development)	Yes	No	Open source	not mentioned
Demonstration of the relationship between sensitivity and identifiabilit for inverse uncertainty quantification	Xu Wu, Koroush Shirvan, Tomasz - Kozbweśki	-	Journal of Computational Physics	30	2019 Yes	methodology Others	- Bayesian calibration - Model discrepancy analysis - Surrogate modeling (Gaussian Process) - Full Bayesian Approach (FBA) - Modular Bayesian Approach (MBA) - Modular Bayesian Approach (MBA) - Probabilistic sensitivity analysis (Socio Indices) - Uncertainty propagation - Markov Chain Monte Carlo (MCMC) sampling	Bayes, Sensitivity analysis, Uncertainty propagation	y Bayes - calibration, SA - analytical, UP - prob - surrogate, SA - simulation	No	not applicable	not applicable	not applicable	Not applicable (the paper is related to nuclear engineering, not drug therapy or vaccine development)	No	No	No	not mentionned
Derivation of site-specific remediation goals by incorporating the bioaccessibility of polycyclic aromatic hydrocarbons with the probabilistic analysis method	Ruhuan Zhang, Dan Han, Lin Jiangs, - Maosheng Zhong-, Jing Liang, Tianxiang Xia, Yang Zhao, D Age	-	Journal of Hazardous Materials	20	2019 Yes	application Others	Monte Carto analysis (MCA)	Uncertainty propagation	UP - prob - basic sim	No	not applicable	not applicable	not applicable	Not applicable (the paper is related to environmental remediation and risk assessment, not drug therapy or vaccine development)	Yes	Commercial platform	No	@RISK (7.5) software of Palisade
Development and specification of physiologically based pharmacokinetic models for use in risk assessment	Rebecca A Clewell, Harvey J Clewell -	-	Regulatory toxicology and pharmacology : RTP	144	2007 Yes	review PBPK	Hierarchical Bayesian approaches Markov chain Monte Carlo (MCMC) simulation Sensitivity analysis Monte Carlo techniques Likelihood methods		y Bayes - hierachical, SA - simulation, Freq - likelihood	No	not applicable	not applicable	not specified	not applicable (the paper is focused on risk assessment for environmental and occupational chemicals, not drug therapy or vaccine development)	No	No	No	not mentioned
Development of a Physiologically Based Pharmacokinetic Model fo Inorganic Mercury Salts in Rodents and Humans and Its Application in the Derivation of Health-Based Toxicity Metrics	Yu-Sheng Lin, Nan-Hung Haleh, - Nagalakhani Keshawa, We-Chun Chou, Geolffey C Peterson, Jeffrey Git	-	Environmental Science and Technology	0	2025 Yes	application PBPK	Bayesian hierarchical framework, Markov chain Monte Carlo (MCMC), varience-based global sensitivity analysis (GSA), probabilistic sensitivity analysis, lognormal distribution for residual errors	Bayes, Sensitivity analysis	y Bayes - hierachical, I SA - simulation	No	not applicable	not applicable	not applicable	not applicable (the paper is related to toxicokinetics and risk assessment, not drug therapy or vaccine development)	No	Open source	Open source	MCSim version 6.2
Development of a Physiologically Based Pharmacokinetic Model of Trichloroethylene and Its Metabolites for Use in Risi Assessment	Harvey J Clewell, P Robinan Gentry, - Tammie R Covington, Jeffery M Gearhart2 the, K S Crump		Environmental Health Perspectives	153	2000 Yes	application PBPK	Monte Carlo analysis, sensitivity analysis	Sensitivity analysis	SA - simulation	No	not applicable	not applicable	not applicable	not applicable	No	Commercial platform	No	PBPK_SIM (K.S. Crump Group, Ruston, LA)
dermal PBPK models for	Man Hu, Zhichun Zhang, Yining Zhang, - Ming Zhan, Wedong Ou, Gengsheng He, Ying Zhou, Adrian Covaci		Science of the Total Environment	14	2023 Yes	application PBPK	Monte Carte simulation, probabilistic sensitivity analysis (usin tuncated normal distributions), uncertainty prospagation (using uncertainty coefficients), Global Sensitivity Analysis (GSA)	g Sensitivity analysis, Uncertainty propagation	SA - simulation, UP - 1 prob - basic sim	No	not applicable	not applicable	not applicable	Not applicable (the paper is related to environmental chemical risk assessment, not drug therapy or vaccine development)	No	Open source	Open source	DeSolve R software (for simulations) "soboljansen" package of R (for global sensitivity analysis)
DIRECT MC CONVERSION OF ABSORBED DOSE TO GRAPHITE TO ABSORBED DOSE TO WATER FOR 60 Co RADIATION	J E Lye, D J Butler, R D Franich, P D - Harty, C P Oliver, G Ramanathan, D V Webb, T Wirght	-	-		2013 Yes	application Others	Sensitivity analysis, Monte Carlo simulations, uncertainty propagation, and type B uncertainty estimation	Sensitivity analysis, Uncertainty propagation	UP - Other, SA - Other	No	not applicable	not applicable	not applicable	not applicable (the paper is related to radiation dosimetry and calibration, not drug therapy or vaccine development)	No	No	No	not mentioned
of an 192 Ir brachytherap	Francisco Javier Casado, Salvador Garci - 'a-Pareja, Elena Cenizo, Beatriz Mateo, Corral Bodineau, Pedro Gala	-	-		2010 Yes	application Others	Statistical (type A) uncertainties: Monte Carlo simulations Systematic (type B) uncertainties: Cell average effect, cross section uncertainties Uncertainty propagation: Intensity-weighted average for photon emission intensity Frequentist approach: Use of coverage factor (k) for uncertainty weighting	Uncertainty s- propagation, basic frequentist	UP - Other	No	not applicable	not applicable	paper is related to radiation therapy	related to radiation therapy and dosimetry, not drug therapy or vaccine development)	No	Commercial platform	No	PENELOPE code, PENGEOM subroutines package
Efficient calibration for hig dimensional computer model output using basis methods	r-James M Salter, Daniel B Williamson -	-	International Journal for Uncertainty Quantification	7	2019 Yes	methodology Others	Emulation using statistical models (emulators) History matching Gaussian processes Mahalanobis distance for implausibility measure Basis methods for surrogate modeling	Uncertainty propagation	UP - prob - surrogate	No	not applicable	not applicable	not applicable	Not applicable (the paper is related to climate modeling, not drug therapy or vaccine development)	Yes	No	No	not mentioned
Efficient DCE-MRI Parameter and Uncertaint Estimation Using a Neural Network	•	•	IEEE Transactions on Medical Imaging	16	2019 Yes	application ML	Bayesian estimation using a neural network to approximate the joint posterior distribution of tracer-kinetic parameters witl a non-informative uniform prior.	h 	Bayes - ML	No	not applicable	not applicable	not applicable	related to monitoring brain tumor treatment response rather than drug therapy development)	No	No	No	Neural network architecture (custom-built)
Efficient Sensitivity/Uncertainty Analysis Using the Combined Stochastic Response Surface Metho and Automated Differentiation: Application to Environmental and Biological Systems	S S Isukapalii, A Roy, P G Georgopoulos -		Risk Analysis	110	2000 Yes	methodology PBPK	Stochastic Response Surface Method (SRSM) Automatic Differentiation of ForRAM (ADIFOR) Polynomial Chaos Expansion (surrogate modeling) Monte Cards amustication (LLH) Polynomial Chaos Expansion (surrogate modeling) Monte Cards amustication (LLH) Polynomial Chaos Expansion (surrogate modeling) Probabilistic sensitivity analysis Uncertainty propagation	Sensitivity analysis, Uncertainty propagation	SA - analytical, UP - I prob - basic sim, UP - prob - surrogate	No	not applicable	not applicable	not applicable	not applicable (the paper is related to uncertainty analysis in environmental and biological systems rather than drug therapy development)	Yes	No	No	ADIFOR, FORTRAN, Maple
Estimation of pressure- particle velocity impedance measurement uncertainty using the Monte Carlo method	Eric Brandão, Rodolfo C C Flesch, Arcanjo - Lenzi, Carlos A Flesch, Eric Branda	-	Journal of the Acoustical Society of America	14	2011 Yes	application Others	Monte Carlo method (MCM)	Uncertainty propagation	UP - prob - basic sim	No	not applicable	not applicable	not applicable	Not applicable (the paper is related to acoustic impedance measurement, not drug therapy or vaccine development)	Yes	No	No	Not mentioned (the paper does not specify any software or programming languages used)
EVALUATING AND EXPRESSING THE PROPAGATION OF UNCERTAINTY IN CHEMICAL FATE AND BIOACCUMULATION MODELS	Matthew Macleod, Allson J Fraser, Don - Mackay		Environmental Toxicology and Chemistry	230	2002 Yes	methodology Others	Fist-order analytical sensitivity and uncertainty analysis, Monte Carlo analysis, graphical technique for uncertainty propagation, Taylor series expansion for uncertainty propagation, log-normal distributions for uncertainty description	Sensitivity analysis, Uncertainty propagation	surrogate, SA - Other	No	not applicable	not applicable	not applicable	Not applicable (the paper is related to environmental chemical fate models, not drug therapy or vaccine development)	No	Commercial platform	Open source	Crystal Ball (for MCMC)
Evaluating parameter availability for physiologically based pharmacokinetic (PBPK) modeling of perfluorooctanoic acid (PFOA) in zebrafish †	Manoochehr Khazaee, Carla A Ng -	-	Environmental Science: Processes & Impacts	22	2017 Yes	application PBPK	Monte Carlo uncertainty and sensitivity analysis, partial rank correlation coefficient analysis	Sensitivity analysis, Uncertainty propagation	UP - Other, SA - Other	No	not applicable	not applicable	not applicable (the paper is about environmental contaminant modeling, not drug therapy or vaccine development)	not applicable (the paper is related to environmental contaminant modeling, not drug therapy or vaccine development)	No	No	No	Not mentioned (the paper does not specify any software used for the uncertainty quantification model)

anatomical and physiological variability or human equivalent doses	Celia M Schacht, Annabel E Meade, - Amanda S Bernstein, Bidya Prasad, Paul M Schlosser, Hien T Tran, Dustin F Kapraun		Toxicological Sciences	2	2025 Yes	application	РВРК	- Monte Carlo (MC) sampling	Uncertainty propagation	UP - prob - basic sim	No	not applicable	not applicable	not applicable	Not applicable (the paper is related to chemical risk assessment, not drug therapy or vaccine development)	No	Open source	Open source	- R version 3.6.0 - MCSim model specification language - C
using PBPK models Evaluation of the Uncertainty in an Oral Reference Dose for Methylmercury Due to Interindividual Variability Pharmacokinetics	Harvey J Clewell, J Jeffery, M Gearhart, P - Robinan Gentry, Tammie R Covington, Cynthia B Vanlandingham, Kenny S Crump, Annette M Shipp'		Risk Analysis	143	1999 Yes	application	РВРК	Monte Carlo analysis, sensitivity analysis (analytical sensitiviti coefficients and correlation analysis)	Sensitivity analysis	SA - analytical, SA - simulation	No	not applicable	not applicable	not applicable	not applicable (the paper is related to environmental health guidelines, not drug therapy or vaccine development)	No	No	No	- R package "deSolve" Not mentioned (the paper does not specify any software or programming language used for the analysis)
Evaluation of uncertainty in input parameters to pharmacokinetic models and the resulting uncertainty in output	David Farrar, Bruce Allen, Kenny Crump, - Annette Shipp	-	Toxicology Letters	80	1989 Yes	application	РВРК	Uncertainty propagation, Monte Carlo simulation using Latin- hypercube procedure, probabilistic sensitivity analysis	- Uncertainty propagation	UP - prob - basic sim	No	not applicable	not applicable	not applicable	not applicable (the paper is related to risk assessment, not drug therapy or vaccine development)	No	No	No	Not mentioned
Exact Gradients Improve Parameter Estimation in Nonlinear Mixed Effects Models with Stochastic Dynamics	Helga Kristin Olafsdottir, Jacob Leander, - Joachim Almquist, Mats Jirstrand		AAPS Journal	8	2018 Yes	methodology	Others	Extended Kalman Filter (EKF)	Other		No	not applicable (the paper is related to drug therapy development but does not specify a therapeutic area or provide an ICD 11 code)	not applicable	not applicable	not applicable	Yes	Commercial platform	Upon request to the authors	Mathematica 11, NONMEM
EXPERIENCING A PROBABILISTIC APPROACH TO CLARIF' AND DISCLOSE UNCERTAINTIES WHEN SETTING OCCUPATIONAL EXPOSURE LIMITS	David Vernez, Sandrine Fraize-Frontier, - Raymond Vincent, Stephane Binet, Y Christophe Rousselle		International Journal of Occupational Medicine and Environmental Health	1	2018 Yes	methodology	Others	Monte Carlo techniques, uncertainty propagation, probabilistic distribution assignment	Uncertainty propagation	UP - prob - basic sim	No	not applicable	not applicable	not applicable	Not applicable (the paper is abou occupational exposure limits, not drug therapy or vaccine development)		No	No	R Statistical Software (version 3.2)
FAST DIMENSION- REDUCED CLIMATE MODEL CALIBRATION AND THE EFFECT OF DATA AGGREGATION 1	Won Chang, Murali Haran, Roman Olson, - Klaus Keller	-	-		2014 Yes	application	Others	Bayesian reduced-dimensional calibration, Gaussian proces- based approach, Metropolis-Hastings algorithm, model discrepancy analysis	s- Bayes, Sensitivity analysis	y SA - analytical, Bayes - calibration	No	not applicable	not applicable	not applicable	Not applicable (the paper is related to climate model calibration, not drug therapy or vaccine development)	No	No	No	R (PORT routine)
Forward and backward uncertainty quantification with active subspaces: Application to hypersonic flows around a cylinder		-	Journal of Computational Physics	23	2019 Yes	application	Others	- Bayesian calibration - Surrogate modeling - active subspace - Monte Carlo (MC) sampling - Kernel density estimation	Uncertainty propagation, Bayes, Other	Bayes - calibration, UP - prob - surrogate	No	not applicable	not applicable	not applicable	Not applicable (the paper is related to aerospace engineering and fluid dynamics, not drug therapy or vaccine development)	No	No	No	COSMIC code, Python SciKit Learn
Gaussian processes with built-in dimensionality reduction: Applications to high-dimensional uncertainty propagation	Gonzalez	-	Journal of Computational Physics	67	2016 Yes	methodology	ML	probabilistic version of active subspaces (Gaussian process regression with built-in dimensionality reduction)	Sensitivity analysis	SA - analytical	No	not applicable	not applicable	not applicable	Not applicable (the paper is not related to drug therapy or vaccine development)	No e	Open source	Open source	Python, GPy module
Global uncertainty and sensitivity analysis of a food-web bioaccumulatio model.	Stefano Ciavatta -		-		2009 Yes	application	Others	Mom's method for preliminary screening Monte Carlo simulations for exploring input-output relationships. State Dependent Regression (SDR) model for partitioning variance	Sensitivity analysis	SA - simulation	No	not applicable	not applicable	not applicable	Not applicable (the paper is related to environmental risk assessment and not drug therap or vaccine development)		Open source	No	SimLab, SS-ANOVA-R
Gradient and Uncertainty Enhanced Sequential Sampling for Global Fit	Sven Lämmle, Can Bogoclu, Kevin - Cremanns, Dirk Roos		Computer Methods in Applied Mechanics and Engineering	5	2023 Yes	methodology	ML	global surrogate modelling. - Predictive posterior uncertainy - Variance estimation (heteroscodastic variance estimate) - Predicted standard deviation	Uncertainty propagation, basic frequentist	UP - prob - surrogate	No	not applicable	not applicable	not applicable	Not applicable (the paper is related to engineering applications and does not discus drug therapy or vaccine development)	No s	Open source	Open source	- Python (programming language) - scikt-optimize (library) - scikt-learn (library) - scikt-learn (library) - scipy (library) - Tensorflow (backend for DGCN) - pygmo (package for evolutionary strategies)
Hierarchical deep compartment modeling: A workflow to leverage machine learning and Bayesian inference for hierarchical pharmacometric modeling	Ahmed Elmokadem I, Mathrew Wens, - Timothy Knab I, Kesten Utleys, Samuel P Calisto I, Daniel Krouac, Ahmed Elmokadem	•	Cinical and Translational Science	1	2024 Yes	methodology	Others	Hierarchical deep compartment modeling with Bayesian inference, Markov Chain Monte Carlo (MCMC) techniques	Bayes	Bayes - ML	No	Not applicable (the paper does not specif the thraspeutic area con the drug's application.	fy or	not specified	not applicable	No	Open source	Open source	- Julia (programming language) - Faux (jacksage for neural network construction) - Turing J (packsage for Bayesian inference and MCMC) - ShapML J (packsage for Shapley values) - Optimy (backsage for optimization) - NLop1
Hierarchical modelling of species sensitivity distribution: development and application to the case of diatoms exposed to several herbicides	Guillaume Kon, Kam King, Floriane Larras, - Sandrine Charles, Marie Laure Delignette- Muller	-	Ecotoxicology and Environmental Safety	21	2015 Yes	methodology	Others	Bayesian inference using Gibbs sampling via Markov Chain Monte Carlo (MCMC) simulation, uncertainty propagation, Bayesian hierarchical modeling	Bayes	Bayes - hierachical	No	not applicable	not applicable	not applicable	Not applicable (the paper is related to environmental toxicology and ecological risk assessment, not drug therapy or vaccine development)	No	Open source	Open source	JAGS, R, R package rjags, R package dolone
Hierarchical stochastic metamodels based on moving least squares and polynomial chaos expansion Application to the multiobjective reliabilit based optimization of space truss structures				42	2010 Yes	methodology	Others	hierarchical stochastic metamodels based on moving least squares and spectral decomposition (by polynomial chaos expansion)	Uncertainty propagation	UP - prob - surrogate	No	not applicable	not applicable	not applicable	Not applicable (the paper is related to structural engineering and optimization, not drug therapy or vaccine development)	Yes	No	No	not mentioned
HUMAN EXPOSURE ASSESSMENT II: QUANTIFYING AND REDUCING THE UNCERTAINTIES	Gary K Whitmyre, Jeffrey H Driver, Michael - E Ginev An, M E Ginevan, Silver Spring, Robert G Tardiff, Scott R Baker		Toxicology and industrial health	16	1992 Yes	methodology	РВРК	Stochastic approaches Monte Carlo simulations Information analysis techniques Bivarlate analysis	Other		No	not applicable	not applicable	not applicable	Not applicable (the paper is related to human exposure assessment, not drug therapy or vaccine development)	No	No	No	Not mentioned
Human health risk assessment of pharmaceuticals in water An uncertainty analysis for meprobamate, carbamazepine, and phenytoin	Arun Kumar, Irene Xagoraraki - : or		Regulatory toxicology and pharmacology : RTP	96	2010 Yes	methodology	Others	Monte Carlo uncertainty analysis, first-order linear approximation for variance attribution analysis	Uncertainty propagation	UP - prob - surrogate, UP - prob - basic sim	No	not applicable	not applicable	not applicable	not applicable (the paper is related to risk assessment of pharmaceuticals in water, not drug therapy or vaccine development)	No	Commercial platform	No	Microsoft Excel

Can Population Modelling Principles be Used to Identify Key Parameters for Paediatric Castance Predictions? An Castance Predictions? An Coptimal Design Theory	-	Pharmaceutical 8 Research	2018 Yes	application PBPK	Frequentist methods: Global sensitivity analysis, Uncertainty propagation using Monite Carlo methods (camping from uniform distributions), Relative standard errors (res), Relative root mean square error (irmse)	analysis	SA - Other, UP - prob - basic sim	Yes hepatic metat	olism small molecule		dose finding, support paediatric clinical trial design	Yes Ope	n source	Open source	PFIM program 4.0 (extended R program) for optimal design procedures with the process of the program of the process of the
cLRT-Mod: An efficient methodology for Frey, Sylvie Retout, France Mente pharmacometic model-based analysis of longitudinal phase II dose finding studies under model uncertainty	-	-	2021 Yes	methodology Others	- Combined likelihood ratio test (cLRT) - Monte Carlo simulations - Coverage probability computation - Model averaging (MA) with AIC as information criterium and frequentist approach for weight calculation - Model selection (MS) with AIC as information criterium	Other, basic frequentist		Yes Type 2 diabet mellitus; ICD 1 5A11	as small molecule 1 code:	Phase II (stated)	dose finding	Yes Com platf	mercial orm	No	NONMEM7.4, PSN 4.4.8
Deep Supramolecular Language Processing for Co-Crystal Prediction Co-Crystal Prediction Chiefetti Prediction Co-Crystal Prediction Chiefetti Prencesca Grisoni	-	Angewandte 1 Chemie	2025	methodology ML	Majority voting , whereby the number of agreements in the predicted class per each molecular pair is used as a measur of confidence (the higher, the better) Standard deviation-based estimation	Other		Yes Musculoskele connective tis disorders; ICC code: M00-Ms	ue 11	not specified (guess: discovery/optimizat on)	The purpose of the DeepCocrystal model is to predict co-crystallization pairs to enhance pharmacokinetic properties of drugs, thereby accelerating drug development.		n source	Open source	DeepCocrystal, Convolutional Neural Networks (CNNs)
Combining Model-Based Daniel Hill-Momanus, Dyfrig A Hughes - Clinical Trial Shrutation, Phammacoeconomics, and Value of Information to Optimize Trial Design	•		2021 Yes	methodology PBPK	Monte Carle simulation, uncertainty propagation, constant coefficient of variation model, variance-covariance matrix estimation	Uncertainty propagation, basic frequentist	UP - prob - basic sim	Yes Gout; M10	small molecule	Phase III (stated)	The purpose of the pharmaconetic model is to generate prior distributions for Bayesian decision—theoretic that disegn, which involves simulating treatment effects under specific conditions such as disea-taking behavior and patient population characteristics, and to identify optimal sample sizes that maximize the expected return on investment (ROI) for the pharmaceutical company.	Yes No		No	R version 3.5.1
Comparative Analysis of Johann Justus, Androna Lange, Jochem Anelli, Martin Alsenz, Patifick J Kuentz, Anelli, Martin Alsenz, Patifick J Kuentz, Anelli, Martin Alsenz, Patifick J Kuentz, Patifick J Kuent			2024 Yes	application QSP	Ensemble modeling with sub-sampling and standard deviatio estimation; calibration and rescaling of predicted distribution	on Other s		Yes not applicable paper is related drug formulated development not specify a therapeutic as ICD 11 code)	d to on out does	Preclinical (guess)	prediction of dose loading in lipid	s No Ope	n source	No	- Scikit-learn - Numpy
Complex Bayesian Modeling Workfows Encoding and Execution Encoding and Execution Made Easy Wha Novel WinGUGS Plugin of the Drug Disease Model Resources interoperability Framework		CPT: 3 Pharmacometri cs & Systems Pharmacology	2018 Yes	methodology Others	Bayesian hierarchical modeling, Bayesian estimation, uncertainty progagation, stochastic simulations, Markov Chain Monte Carlo (MCMC) algorithms, informative and weakly informative priors	Bayes	Bayes - hierachical	e, g. Diabetes code: 5A10	ICD-11 not applicable	paper is about modeling tools and	not applicable the paper focuse on improving pharmaconnetic modeling workflows rather than drug therapy or vaccine development)	No Ope	1 source	Open source	DOMoRe Interoperability Framework (IOF) tools: estimation: -WinBUGS -NONMEM -Monote diagnostics: -Xpose Simulation: -Simulation: -Simulation: -PopED -PPIM -PPIM
Conformal prediction. Sased machine learning in Cheminformatics: Current applications and new challenges		Artificial 1 Inneligence in the Life Sciences	2025 Yes	methodology ML	Conformal Prediction (CP) Standard Devision (SD) of esiduals, Ensemble methods, Bootstrapping, Quantile regression, Monte Carlo dropout, Bayesian methods (mentionned as alternative methods)	Bayes, basic frequentist	Bayes - ML, Freq - resampling	Yes not applicable	not applicable	paper is related to drug therapy development	related to Cheminformatics and QSAR modeling, not directly to drug therapy development or vaccine development)	No Ope	1 source	Open source	- Python modules: crapes (https://ghthu.com/henridoutr (mtrps://ghthu.com/henridoutr (mtrps://ghthu.com/henridoutr (mtps://ghthu.com/henridoutr (mtps://ghthu.com/henridoutr (https://ghthu.com/henridoutr (https://ghthu.com/henridoutr (https://ghthu.com/henridoutr (https://ghthu.com/henridout
Conformatized Graph Learning for Melecular ADMET Property Prediction and Reliable Uncertainty Quantification		Journal of 4 Chemical Information and Modeling	2024 Yes	methodology ML	Contomated Fusion Regression (CFR) Desp Ensemble (Ensemble) Mente Carlo Disposit (Droposit) Ensemble Seade Conformal Prediction (CP) Inductive Conformal Prediction (ICP) - Posthor calibration using lostonic Regression (IRR) - Conformalized Quantile Regression (CORR)	Bayes, Other	Bayes - ML	Yes not applicable paper is relate drug discover development not specify a therapeutic ar ICD 11 code)	and out does articular	early-stage drug development (guess)	The purpose of the model is to enhance the efficiency and safet of early-stage drug development by providing accurate predictions and reliable uncertainty quantification for compound prioritization.	y	n source	Open source	Python Chemprop framework Gilthub: https://github. com/pelyaoli/Conformal-ADMET-Prediction
DepSIBA: chemical C Fotis, N Meimetis, A Sardis, L G structure-based inference of biological alterations using deep learning †			2020 Yes	methodology ML	Deep ensembles with Gaussian mixture for uncertainty estimation, using coefficient of variation (CV) as a measure of predictive uncertainty.	Other		Yes Cancer; C00-l	149 small molecule	Early-stage drug discovery (guess)	The purpose of the model is to aid in the identification of compounds with desired biological effects, enhancing drug discovery by predicting efficacy and toxicity profiles.		n source	Open source	Keras, TensorFlow, R

evaluation of uncertainty quantifying machine learning models to predict piperacillin plasma	Jame Verhaeghe, Sofie A M Dhaese, Thomas De Corte, David Vander Mijnsbrugge, Helsen Aardems, Jan G Zigsta, Alain G Verstraste, Veronique Stove, Pleter Colin, Ferrise Orgense, Jan J De Waele, Sofie Van Hoecke		BMC Medical Informatics and Decision Making	17	2022 Yes	application ML	Quantile Ensemble method Gaussian processes Absolute Distribution Coverage Error (ADCE) Distribution Coverage Error (DCE)	Other		Yes	Infectious diseases; smi ICD 11 code: 1A00- 1A9Z		paper is about optimizing existing drug therapy rather	The purpose of the model is to predict plasma concentrations of piperacillin to guide dosing regimen adaptations and ensure therapeutic drug concentrations are achieved, providing uncertainty quantification for clinical decision-making.	No	Open source	Open source	Python (version 3.8.5), NumPy (version 1.19.1), TensorFlow
Diazepam Pharamacokinetics from Preclinical to Phase I Using a Bayesian Population Physiologically Based Pharmacokinetic Model with Informative Prior Distributions in Winbugs	Ivelina Gueorguleva, Leon Aarons, - Malcolin Rowland		Journal of Pharmacokineti cs and Pharmacodyna mics	32	2006 Yes	methodology PBPK	Bayesian analysis with Matriov Chain Morte Carlo (National Morte Carlo (National Morte) and non-informative is convergence checks using suce plots and diagnosti like COOR, Rathery and Lewis criterion, and Heidelber Welch stationarity tests.	riors, c tests	Bayes - Other	Yes	e.g. Anxiety disorders; smi 6B0Z	all molecule	Phase I (guess)	The purpose of the model is to predict human pharmacokinetics based on preclinical data, which is essential for dose finding and understanding how drugs behave in the human body.		Commercial platform	No	WinBUGS
first-in-human studies and	Caroline Stokke, Silvano Gnesin, Johannes Tran-Gis, Francesco Cic, Søren Holm, Marta Cremonesi, Joh Blakkisrud, Thomas Wendler, Nic Gillings, Ken Hermann, Felix M Mottaghy, Jonathan Gear	-	European Journal of Nuclear Medicine and Molecular Imaging	18	2024 Yes	review PBPK	Goodness-of-fit for uncertainty estimation Ordinary least squares (OLS) for fitting uncertainty Generalized least squares (GLS) for propagating uncertainty Uncertainty propagation using population distribution	Uncertainty propagation	UP - prob - basic sim, UP - Other	Yes	not applicable (the sm paper does not specify biol a particular therapeutic area or ICD 11 code)	logics	early phase clinical	The purpose of the model is dose finding and identification of the therapeutic window to optimize treatment regimens.	No	No	No	not mentioned
Effect of uncertainty abou population parameters on pharmacodynamics-based prediction of clinical trial power B	t Holger Kraiczi, Marianne Frise -	-	Contemporary Clinical Trials	5	2005 Yes	methodology Other	Bayesian methods fluit parametric modeling, indep normal and innerse Camma distributions). Variance-based sensitivity analysis Reference to Sobol' sensitivity indices	Bayes, Sensitivit analysis	y Bayes - Other, SA - Other	Yes	Cardiovascular smi diseases; I10-I15	all molecule	Phase II or Phase III (guess)	The purpose of the pharmacometric model is to predict the power of clinical trials by incorporating uncertainty about population parameters, which helps in distinguishing important from unimportant parameters for precise power predictions and resource allocation.	No	Commercial platform	No	S and S-Plus 6.0 for Windows
Predictive Uncertainty Due	Joseph G Shuttleworth, Chon Lok, Lei, - Dominc G Whitaker, Monique J Whofley. Adam P Hill, Simon P Preston, Gary R Means	-	Bulletin of Mathematical Biology	12	2023 Yes	methodology Other	s Model discrepancy analysis, Interval analysis	Sensitivity analysis, Uncertainty propagation	SA - analytical, UP - non prob	Yes	Cardiovascular smi diseases; ICD 11 code: 9A00-Z95		paper is related to drug safety	Drug safety assessment: Testing whether the expected dynamics of I Kr under drug block are expected to cause problems.	No	Open source	Open source	- CMA-ES - PINTS interface
ENHANCING UNCERTAINTY QUANTIFICATION IN DUBBOTH OF THE CENSORED REGRESSION LABELS	Emma Svensson, Hannah Rosa - Friesacher, Susanne Winiwarter, Lewis Mervin, Adam Arany, Ola Engkvist				2024 Yes	methodology ML	Censored labels combined with: - Ensemble-based methods/Bayesian learning (Mon Dropout, ensembles of neural networks, Bayes by B - Gaussian models (mean-variance estimation) without censored labels: - mindom forests - Evidential (deep learning)		Bayes - ML	Yes	not applicable (the smi paper does not specify a therapeutic area or provide an ICD 11 code)	all molecule	early stages (guess) drug discovery, deciding which experiments to pursue	Yes	Open source	Open source	- Scikit-learn - PyTorch - Python 3.11
Estimating the predictive quality of dose-response after model selection	Chuanpu Hu, Yingwen Dong -	-	-		2007 Yes	methodology Other	Data perturbation using Monte Carlo approximations estimating standard errors and prediction errors; Fre approach	for basic frequentist quentist		Yes	not applicable (the not paper is related to drug development but does not specify a therapeutic area or provide enough information to assign an ICD 11 code)		Early clinical stage (guess)	dose finding (predicting the dose that achieves a target effect, finding MED or MTD)	Yes	No	No	Not mentioned (the paper does not specify any software, packages, or programming languages used in the study)
sex-specific PFAS	Todd J Zurlinden, Michael W Dzierlenga, - Dustin F Kapraun, Caroline Ring, Amanda S Bemstein, Paul M Schlosser, Viktor Morozov, Lawrence Lash		Toxicology and Applied Pharmacology	1	2025 Yes	application Other	s Bayesian hierarchical meta-regression, Bayesian cal uncertainty propagation	bration, Bayes	Bayes - hierachical, Bayes - calibration	Yes	not applicable not	t applicable	early stages (guess) understand how drugs behave in different species, extrapolation of pharmacokinetic data from animals to humans	No	Open source	Open source	- Webplot digitizer - Python v3.12 - PyMC v. 5.7.2 - Bambi - ArviZ v. 0.16.1 - Matplotlib v3.7.1
	Weihsueh A Chiu, Hugh A Barton, Robert - S Dewoskin, Paul Schlosser, Chad M Thompson, Babasaheb Sonawane, John C Lipscomb, Kannan Krishnan		Journal of Applied Toxicology	138	2007 Yes	review PBPK	- Monte Carlo simulation - Bayesian MCMC analysis	Bayes	Bayes - Other	Yes	not applicable not	t applicable	not applicable	Not applicable (the paper is focused on environmental risk assessment, not drug therapy or vaccine development)	No	No	No	Not mentionned
Finding sensitive parameters in internal dose calculations for radiopharmaceuticals commonly used in clinical nuclear medicine	Vladimir Spiełmann, Wei Bo Li, Maria Zanki -		Radiation and Environmental Biophysics	3	2018 Yes	methodology Other	- Sampling-based regression method (partial rank or coefficients) - Variance-based method	relation Sensitivity analysis	SA - simulation	Yes	not applicable (the paper is focused on radiophamaceuticals in nuclear medicine, not drug therapy development)		clinical trial phase (guess)	radiopharmaceutical dosimetry	No	No	No	Software tool modified from a code by Iman et al. (1985) Computer program DoseU developed at the Helmholtz Zentrum München
Fuzzy Simulation of Pharmacokinetic Models: Case Study of Whole Bod Physiologically Based Model of Diazepam	Ivelina I Gueorguieva, Ivan A Nestorov, - Malcolm Rowland y	-	Journal of Pharmacokineti cs and Pharmacodyna mics	43	2004 Yes	application PBPK	Fuzzy simulations, Monte Carlo simulations, Fuzzy- probabilistic approach	Uncertainty propagation	UP - non prob	Yes	Anxiety disorders sma (6B00), Insomnia (7A00), Seizures (6A00), Muscle spasms (7B00)			dose finding, identification of subpopulations	Yes	Commercial platform	No	MATLAB 6.1, Isqcurvefit function
Global sensitIvity analysis in physiologically-based pharmacokinetic/ pharmacodynamic models of inhaled and opioids anesthetics and its application to generate virtual populations	Frank Sa, 'nchez Restrepo, Mauricio - Aher, 'ndez Herna, Valdivieso, Mauricio - Herna, 'ndez Valdivieso, Mauricio - Herna, 'ndez Valdivieso				2022 Yes	methodology PBPK	Global senatilikly analysis (GSA) using the Sobol me variance decomposition	thod for Sensitivity analysis	SA - analytical	Yes	General anesthesia; smi ICD 11 code not explicitly mentioned but related to anesthesia	all molecule	(guess: preclinical o	The purpose of the model is to revaluate controller stability and performance in the context of patient variability, which is relevant to drug therapy development. It also aids in improving model performance and efficiency by identifying critical parameters affecting drug response.		Open source	Open source	R version 4.0.3 R package "deSolve" version 1.28 R package "sensitivity" version 1.23.1 R package "GenSA" version 1.1.17 C language
Global sensitivity analysis of Open Systems Pharmacology Suite physiologically based pharmacokinetic models	Abdulkarim Najjar, Abdullah Hamadeh, - Sophia Krause, Andreas Schepky, Andrea Edginton		CPT: Pharmacometri cs & Systems Pharmacology	3	2024 Yes	methodology PBPK	Probabilistic uncertainty analysis, Moris method, So method, EFAST method, Frequentist approach usin percentiles (2.5th, 50th, 97.5th) for uncertainty quar	analysis basic	SA - analytical	Yes	e.g. Itraconazole: Antifungal therapy (ICD 11 code: B35- B49) e.g. Midazolam: Sedation/Anesthesia (ICD 11 code: 6A00- 6A92)		(guess: preclinical o	identification of input parameters if that require optimization based on experimental data; evaluation of sensitivity of pharmacokinetic parameters and their ratios in drug-drug interaction studies	No	Open source	Open source	Open Systems Pharmacology (OSP) Suite OSP Global Sensitivity R package R programming language

Global Sensitivity Analysis of the Rodgers and Rowland Model for Prediction of Tissue: Plasma Partitioning Coefficients: Assessment of the Key Physiological and Physiochemical Factors That Determine Small-Molecule Tissue	Estele Yau, Andrés Olvares-Morales, Michael Gertz, Nel Parott, Adam S Damkdi, Leon Aatons, Kayode Ggungbenno			AAPS Journal	19	2020 Yes	methodology	РВРК	Global sensitivity analysis (GSA) Latin typercube sampling (LHS) Partial rank correlation coefficients (PRCC) Monte Carlo sampling Local sensitivity analysis (SA) Bayesian approach for parameter estimation	Sensitivity analysis	SA - simulation	Yes	not applicable	small molecule	early development	The purpose of the model is to adi in drug development by predicting Issue-unbound plasma partition coefficients (Kpus) and the volume of distribution at steady state (Vss.), which are crucial for selecting the first dose in humans and dosing frequency. It also aims to reduce PBPK model dimensionally by identifying key parameters that influence drug distribution.	No	Open source	No	R v.3.4.2, RStudio v.1.0.153
Handling uncertainties in toxicity modelling using a fuzzy filter	S Kumary, M Kumarz, R Stollx, U Kragl -		-	SAR and QSAR in environmental research (Print)	14	2007 Yes	methodology	Others	Fuzzy computations, Energy-gain bounding criterion	Uncertainty propagation	UP - non prob	Yes	not applicable	not applicable	paper is related to toxicity modeling, not directly to drug	Not applicable (the paper is focused on toxicity modeling for environmental and health risk assessment, not drug therapy or vaccine development)	No	Commercial platform	Commercial platform with given parameters	MATLAB 6.5
Hierarchical Stochastic Model in Bayesian Inference for Engineering Applications: Theoretical Implications and Efficient Approximation	Stephen Wu, Panagiotis Angelikopoulos, - James L Beck, Petros Koumoutsakos		-	-		2018 Yes	methodology	Others	- Hierarchical Bayesian Models (HBMs)	Bayes	Bayes - hierachical	Yes	Cancer; C00-D49	biologics	Preclinical/Clinical (guess)	The purpose of the pharmacometric model is to refine predictions of drug behavior by accounting for uncertainties in model parameters and prediction errors, which is relevant to optimizing drug therapy.	Yes	No	No	BASIS (software for Bayesian inference)
How Sure Can We Be about ML Methods-Based Evaluation of Compound Activity: Incorporation of Information about Prediction Uncertainty Using Deep Learning Techniques	Igor Sieradzki, Damian Leśniak, Sabina - Podlewska, Igor F Tsigelny, Bernard Maigret		-	Molecules	2	2020 Yes	methodology	ML	Dropout-based uncertainty estimation (using stochasticity introduced by dropout during inference to measure variance across multiple runs)	Bayes	Bayes - ML	Yes	e.g. Neurological disorders, Psychiatric disorders	small molecule	paper is related to drug therapy development, but the specific stage is	The purpose of the model is to aid in the selection and optimization of compounds during virtual screening experiments, which is a part of drug therapy development. It helps in identifying potentially active compounds by estimating prediction uncertainty.		Open source	No	DeepChem package
Human Variability in Carboxylesterases and carboxylesterase-related Uncertainty Factors for Chemical Risk Assessmen	E Di Consiglio, K Damey, F M Buratti, L - Turco, S Vichl, E Testal, L S Lautz, J L C M Dome, Angela Mally		-	Toxicology Letters	18	2021 Yes	methodology	PBPK	Hierarchical Bayesian meta-analysis	Bayes	Bayes - hierachical	Yes	not applicable (the paper discusses drug metabolism but does not specify a single the specific area or provide an ICD 11 code)	small molecule	not specified	The purpose of the model is to improve the assessment of clinica outcomes for pharmaceuticals metabolized by CES and to support the design of prodrugs using information on CES-specific tissue distribution.	No I	Open source	Open source	- R (version 3.5) - Jags (version 4.2.0) - EndNote (version X8)
Methods in Clinical Pharmacology Series Bridging the gap: a review of dose investigations in paediatric investigation plans	Lisa V Hampson, Ralf Herold, Martin Posch, Julia Saperia, Anne Whitehead			British Journal of Clinical Pharmacology	14	2014 Yes	review	PBPK	Bayesian methods	Bayes	Bayes - Other	Yes	not applicable	not applicable	Clinical trial phase (guess)	dose finding, identification of subpopulations, verification of extrapolation assumptions	No	No	No	R
SEE PROFILE	Catherine Enright Valeo, Michael G Madden, Niall Madden, John G Laffey, Catherine G Enright		-		0	2014 Yes	methodology	Others	Bayesian uncertainty quantification using Dynamic Bayesian Networks with Gaussian distributions for measurement error modeling and prediction of means and standard deviations.	Bayes	Bayes - ML	Yes	Endocrinology; 5A1	biologics	paper is related to drug therapy but does not specify the	The purpose of the model is to dynamically re-estimate model parameters for optimizing insulin therapy in critically ill patients, which aligns with dose finding and identification of subpopulations.	No	No	No	Not mentioned
Human variability in glutathione-S-transferase activities, tissue distributio and major polymorphic variants: Meta-analysis and implication for chemical risk assessment	Franca Maria Buratti, Keyvin Damey, Susanna Vichi, Laura Turco, Emma Di n Consiglio, Leonie S Lautz, Camille Béchaux, Jean-Lou Christian, Michel Dome, Emanuela Testai		-	Toxicology Letters	23	2020 Yes	application	Others	Bayesian meta-analysis, probabilistic distributions, uncertainty factors (UFs), coefficient of variation (CV)	Bayes	Bayes - hierachical	No	not applicable	not applicable	not applicable	not applicable (the paper is related to chemical risk assessment)	No	No	No	
Human variability in influx and efflux transporters in relation to uncertainty factors for chemical risk assessment.	Damey K, Turco L, Burstli FM, Di Consiglo 10 E, Vichi S, Roudot AC, Béchaux C, Testal 02 E, Dome JLCM, Lautz LS	20 111205	10.1016/j fct 2	Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association	19	2020 Yes	methodology	РВРК	Bayesian hierarchical meta-egression, probabilistic sensitivity analysis, uncertainty propagation	y Bayes, Sensitivity analysis, Uncertainty propagation	SA - Other, UP - Other, Bayes - hierachical	Yes	not applicable (the paper does not specify a particular therapeutic area or ICD 11 code)	,	(method would be	The purpose of the model is to quantify human variability in drug metabolism	No	Open source	Upon request to the authors	R (version 3.5), Jags (4.2.0), EndNote (X8)
Human variability in polymorphic CYP2D6 metabolism: Implications for the risk assessment of chemicals in food and emerging designer drugs	Damey, K., Lautz, L.S., Béchaux, C., 10 Wecek, W., Testai, E., Amzal, B., Dome, nt J.L.C.M. 0	t.2021.10676	https://doi.org/ 10.1016/j.envi nt.2021.10676 0	International	17	2021 Yes	methodology	РВРК	Bayesian hierarchical meta-regression, Bayesian calibration, MCMC simulations	Bayes	Bayes - hierachical, Bayes - calibration	Yes	not applicable (the paper does not focus on a specific therapeutic area)	small molecule	not specified (method would be used in risk assessment)	the paper is focused on understanding variability in drug metabolism	No	Open source	Open source	- R (version 3.5) - Jags (4.2.0) - Benchmark dose modeling tool of the European Food Safety Authority (EFSA) - EndNote (X8)
Identification of dynamica systems with structured uncertainty	John A Burns, Eugene M Cliff, Terry L - Herdman		-		5	2018 Yes	methodology	Others	Bayesian methods for model discrepancy analysis, bounded- error parameter estimation (BEPE), bound-to-bound (B2B) approach	Bayes, Sensitivity analysis	Bayes - Other, SA - Other	No	not applicable	not applicable	not applicable	Not applicable (the paper is not related to drug therapy or vaccine development)	Yes	Commercial platform	No	MATLAB (specifically, the Isqnonlin routine)
uncertainty Identifying Bayesian optimal experiments for uncertain biochemical pathway models	Natalie M Isenberg, Susan D Mertins, Byung-Jun Yoon, Kristofer G Reyes, Nathan M Urban			Scientific Reports	0	2023 Yes	methodology	Others	approach Bayesian optimal experimental design (BOED), Hamitonian Monte Carlo (RMC), standard deviation computation, sigmoidal curve fitting	Bayes	Bayes - Other	Yes	e.g. Cancer; C00-D49	e.g. small molecule	Preclinical (guess)	development) mathematically describing cellular reaction networks that include drug mechanisms of action	Yes	Open source	Upon request to the authors	- Programming language: Julia - Probabilistic programming library: Turing.] - Sampler. No U-Turn Sampler (NUTS) - ODE model evaluation library: DifferentialEquations.]
Impact of Exposure Uncertainty on the Association between Perfluorocctanoate and Preeclampsia in the C8 Health Project Population	Scott M Barfell, Raghavendhran Avanasi, - Hyeong-Moo Shin, Verónica M Vieira, David A Savitz		-	Environmental Health Perspectives	15	2016 Yes	application	Others	Monte Carlo simulations, probabilistic sensitivity analysis, law of total variance for uncertainty decomposition	Sensitivity analysis	SA - analytical, SA - simulation	No	not applicable	not applicable	not applicable	not applicable	No	Open source, Commercial platform	No	MATLAB, R
Improvements in Estimating Bioaccumulation Metrics in the Light of Toxicokinetic Models and Bayesian Inference	Aude Ratier, Christelle Lopes, Sandrine - Charles		-			2022 Yes	application	Others	Bayesian inference, Bayesian framework, posterior probability distributions, quantiles (50%, 75%, 97.5%) for credible intervals	Bayes	Bayes - Other	No	not applicable	not applicable	not applicable	Not applicable (the paper is related to environmental risk assessment and not to drug therapy or vaccine development)	No	Open source	Open source	MOSAIC bloacc web service R-package rbloacc on CRAN

Improving the estimation oparameter uncertainty distributions in nonlinear mixed effects models using sampling importance resampling	f Anne-Gae 'lle Dosne, Martin Bergstrand, - Kajsa Harling, Mats O Karlsson	-			2016 Yes	methodology	Others	Sampling importance resampling (SIR) Asymptotic covariance matrix Bootstrap (parametric and nonparametric) Log-likelihood profiling	basic frequentist	Freq - resampling, Y	'es	- Moxonidine: Cardiovascular diseases (ICD 11 code: BA00-BA99) - Pefloxacin: Infectious diseases (ICD 11 code: 1A00-1A99) - Phenobarbital: Neurological disorders (ICD 11 code: 8A00- 8A99)	small molecule		dose finding, optimizing dosing regimen	Yes	Commercial platform	No	NOMMEM 7.2 and 7.3, PsN 3.5.9 and above, RStudio 0.98, R3.1.2
Improving Uncertainty in Widmark equation calculations: Alcohol volume, Strength and Density	Peter D Maskell, R Alex Speers, Dawn L - Maskell	-	Science & justice : journal of the Forensic Science Society	10	2017 Yes	application	Others	Monte Carlo Simulation, General Error Propagation (GEP)	Uncertainty propagation	UP - prob - basic sim N	ło	not applicable	not applicable	not applicable	Not applicable (the paper is related to forensic toxicology and improving Widmark equation calculations, not drug therapy or vaccine development)		Commercial platform	No	GUM Workbench EDU Software Version 2.4.1.384 (Metrodata GmbH)
IN-SILICO PREDICTION OF DRUG PROPERTIES IN MAN USING PRECLINICAL DATA AND COMPUTER-ASSISTED DRUG DEVELOPMENT		-		6	2001 Yes	application	Others	Monte Carlo simulations, stochastic modeling, coefficient of variation for interndividual variability, sensitivity index for sensitivity analysis, probabilistic sensitivity analysis, uncertainty propagation	analysis, Uncertainty propagation	UP - Other, SA - Y Other	'es	Central Nervous System (CNS) disorders; ICD 11 code not explicitly mentioned but likely related to F00-F99 codes	not specified	Phase I and Phase II (guess)	dose finding, identification of optimal in-vivo release characteristics	No	Commercial platform	No	- Trial Simulator - NON-MEM - SAS software
Incorporation of in vitro metabolism data and physiologically based pharmacokinetic modeling in a risk assessment for chloroprene	Harvey J Clewell, Jerry L Campbell, Cynthia Van Landingham, Allson Franzen, Myoung Yoon, Darol E Dodd, Melvin E Andersen, P Robinan Gentry	-	Inhalation Toxicology	13	2019 Yes	application	PBPK	Monte Carlo uncertainty analysis, parameter sensitivity analysis using normalized sensitivity coefficients	Sensitivity analysis	SA - simulation N	lo	not applicable	not applicable	not applicable	Not applicable (the paper is related to environmental health risk assessment, not drug therapy or vaccine development)	No	Open source	Upon request to the authors	- Advanced Continuous Simulation Language (ACSL) - R (open source programming language) - Crystal Ball Release 11.1.2.3.850
Influence of the uncertainty in the validation of PBPK models: A case-study for PFOS and PFOA	Francesc F Abrega, Marti Nadal, Marta - Schuhmacher, L Domingo, Vikas Kumar		Regulatory toxicology and pharmacology : RTP	23	2016 Yes	application	РВРК	Uncedeatiny propagation using Latin Hypercube Sampling (LHS) and frequentist statistical validation using Student's t-test.	Uncertainty propagation	UP - prob - basic sim N	lo	not applicable (the paper is related to environmental health risk assessment rather than drug therapy development)	not applicable	not applicable (the paper is about environmental health risk assessment using PBPK models, not drug therapy development)	Not applicable (the paper is related to environmental pollutant modeling rather than drug therapy development)	No	No	No	Not mentioned (the paper does not specify any software used for the study)
INFLUENCES OF PARAMETER UNCERTAINTIES WITHIN THE ICRP-66 SEPIRATORY TRACT MODEL: A PARAMETER SENSITIVITY ANALYSIS	Thomas E Huston, Eduardo B Farfa 'n, - Wesley Emmett Bolch		Health Physics	15	2003 Yes	application	Others	probabilistic sensitivity analysis, uncertainty propagation, global sensitivity analysis, Latin hypercube sampling, multivarfate regression model	Sensitivity analysis, Uncertainty propagation	SA - simulation, UP - N prob - basic sim	lo	not applicable	not applicable	not applicable	Not applicable (the paper focuses on the effects of inhaled aerosols)	No	No	No	- LUDUC (Lung Dose Uncertainty Code) - Software developed by Iman et al. (1985) for calculating SRRCs and PRCCs
Insulin Minimal Model Indexes and Secretion: Proper Handling of Uncertainty by a Bayesian Approach	Paolo Magni, Giovanni Sparacino, - Riccardo Bellazzi, Gianna Maria Toffolo, Claudio Cobelli	-	Annals of Biomedical Engineering	13	2004 Yes	methodology	Others	Bayesian methodology implemented by Markov chain Monte Carlo (MCMC)	Bayes	Bayes - Other Y	'es	- Diabetes mellitus Typ 2; 5A11 - Diabetes mellitus Typ 1; 5A10	biologics	not specified	paper is focused on understanding insulin secretion and β-cell function	Yes	No	No	
CYP3A4 metabolism: A	Keyvin Damey, Emanuela Testai, Franca - M Buratti, Emma Di Consiglio, Emma E J r Kasteel, Njmke Kramer, Laura Turco, Susanna Vichi, Alain-Claude Roudot, Jean-Lou Dome, Camille Béchaux	-	Computational Toxicology	13	2019 Yes	application	Others	Bayesian hierarchical modeling	Bayes	Bayes - hierachical Y	'es	not specified	not specified	not specified	chemical risk assessment)	No	Open source	No	JAGS software, R (version 3.5), EndNote (X8)
Interpretable Deep- Leaming D& Prediction for Small Molecule Drugs via Atomic Sensitivity Analysis	Joseph Decorte, Benjamin Brown, - Rathmell Jeffrey, Jens Meiler	-			2024 Yes	application	ML	- Standard deviation (a) as a measure of confidence Filter score for evaluating classification model output - discrete distribution for each molecule in question	basic frequentist, Other	¥	'es	not specified	small molecule	hit-to-lead or lead optimization	The purpose of the model is to predict pix a values for small molecule drugs, generalize predictions to novel compounds, and optimize physicochemical liabilities through attornation analysis, which aids in lead compound optimization and structure preparation for proteinligand docking.	No	Open source	Open source	- C++ (programming language) - Biblogy and Chemistry Library (BCL) (software package) - Intal Xenon W-2295 CPU cores (hardware) - Vividia RTX A5000 GPU (hardware) - Cofrais (software tool) - Molecular Operating Environment (MOE) (software tool)
Investigating the uncertainty of prediction accuracy for the application of physiologically based pharmacokinetic models to animal-free risk assessment of cosmetic ingredients	Shimpel Terasaka, Akane Hayashi, Yuko - Nukada, Masayuki Yamane, Lesa Aylward	-	Regulatory toxicology and pharmacology : RTP	2	2022 Yes	methodology	РВРК	 - Use of the 97.5th percentile of the logarithm of the fold error to calculate the modeling uncertainty factor (MUF). - Calculation of the absolute average fold error (AAFE) to assess prediction accuracy. 	Sensitivity analysis	SA - simulation N	ło	not applicable	not applicable	not applicable	Not applicable (the paper is focused on animal-free risk assessment for cosmetic ingredients, not drug therapy or vaccine development)	Yes	Commercial platform		- ADMET Predictor version 9.5 - GastroPlus version 9.7 - Microsoft Excel - GraphPad Prism 7 - Open Babel
Investigation of the impact of pharmacokinetic variability and uncertainty on risks predicted with a pharmacokinetic model for chloroform	Bruce C Allen, Tammie R Covington, - Harvey J Clewell	-	Toxicology	51	1996 Yes	application	PBPK	Monte Carlo simulation, normal distributions for interindividua variability and parameter uncertainty, sensitivity analysis, multistage model for dose-response fitting, probabilistic sensitivity analysis using correlated trivariate normals.	Sensitivity analysis	SA - simulation N	ło	not applicable	not applicable	not applicable	Not applicable (the paper is related to risk assessment of chloroform, not drug therapy or vaccine development)	No	No	No	Not mentioned (the paper does not specify any software, packages, or programming languages used for the uncertainty quantification model)
whales: Bayesian	Liesbeth Weijs, Anthony C Roach, - Raymond S H Yang, Robin Mcdougall, Michael Lyons, Conrad Housand, Detlef Tibax, Therese Manning, John Chapman, Katelyn Edge, Adrian Covaci, Ronny Blust		Chemosphere	14	2013 Yes	application	РВРК	Bayesian approach with Markov chain Monte Carlo (MCMC) simulations	Bayes	Bayes - Other N	ło	not applicable	not applicable	paper is focused or environmental	not applicable (the paper is related to environmental toxicology and not drug therapy or vaccine development)	No	Commercial platform	Open source	acsIX/Libero software (AEgis Technologies, Orlando, FL)
Linking fate model in freshwater and PBPK model to assess human internal dosimetry of B(a)P associated with drinking water	Philippe Ciffroy, T Tanaka, E Johansson, - C Brochot	-	Environmental Geochemistry and Health	7	2011 Yes	application	РВРК	- Probability density functions (PDFs) for input parameters - Bayesian approach for updating generic PEFs with site- specific reasurements or uncertainty propagation - Reginestion methods for sensitivity analysis - Reginestion methods for sensitivity analysis - Uncertainty propagation through random sampling - Uncertainty propagation through random sampling	Bayes, Sensitivity analysis, Uncertainty propagation	UP - prob - basic N sim, Bayes - Other, SA - Other	ło	not applicable	not applicable	not applicable	Not applicable (the paper is focused on environmental exposure and toxicokinetics, not drug therapy or vaccine development)	No	Commercial platform	Commercial platform with given parameters	Ecolego

Machine learning in drug development: Characterizing the effect 30 drugs on the QT interval using Gaussian process regression, sensitivity analysis, and uncertainty quantification	Francisco Sahil Costabal, Kristen - Matsuno, Jiang Yao, Paris Perdikaris, of Ellen Kuhl		Computer Methods in Applied Mechanics and Engineering	86	2019 Yes	application	ML	- Hierarchical Bayesian model - Gaussian process regression - Latin hypercube design - Posterior variance	Bayes, Sensitivity analysis	Bayes - hierachical, SA - simulation	Yes	Cardiovascular diseases, specifically arrhythmias; 149.0 (Other specified arrhythmias)	small molecule	paper is related to drug therapy development but does not explicitly state the stage of	The purpose of the model is to predict QT interval lengths and identify relevant ion channels for QT interval prolongation, supporting the design of safe and effective drugs by understanding their effects on the QT interval.	4	Open source, Commercial platform	No	Abaqus, SciPy, L-8FGS
Mapping 18 F-FDG Kinetics Together with Patient-Specific Bootstrap Assessment of Uncertainties: An Illustration with Data from PETICT Scanner with a Long Axial Field of View	Oi Wu, Fengyun Gu, Liam D - O'sulleabhain, Hasan Sari, Song Xue, D Kuangyu Shi, Axel Rominger, Finbarr O'sullivan	-	-		2024 Yes	application	Others	Image-based bootstrapping methodology, Log-linear modeling	basic frequentist	Freq - resampling	No	not applicable	not applicable	not applicable	Not applicable (the paper is related to clinical decision-making in cancer treatment using PET biomarkers, not drug therapy or vaccine development)	No	No	No	
Markov Chain Monte Carl Algorithm based metaboli flux distribution analysis on Corynebacterium glutamicum	o Visakan Kadirkamanathan, Jing Yang, - c Stephen A Bilings, Philip C Wright, Jonathan Wren	-	Nature Biotechnology	1118	2006 Yes	methodology	Others	Markov Chain Monte Carlo (MCMC) approach, Truncated Gaussian multiplicative models	Other		No	not applicable	not applicable	not applicable	Not applicable (the paper is related to metabolic flux analysis and not to drug therapy or vaccine development)	Yes	No	No	Not mentioned (the paper does not specify any software, packages, or programming languages used for uncertainty quantification)
Mathematical and statistical model misspecifications in modelling immune response in renal transplant recipients	H T Banks, R A Everett, Shuhua Hu, Neha - Murad, H T Tran	-		3	2018 Yes	application	Others	Difference-based method Iterative weighted least squares technique Modified residual plots	Other		No	not applicable	not applicable	not applicable	not applicable (the paper is not related to drug therapy or vaccine development)		Commercial platform	No	MATLAB (specifically, the inbuilt MATLAB function fmincon)
Maximum Entropy Technique and Regularization Functional for Determining the Pharmacokinetic Parameters in DCE-MRI	Zahra Amini Farsani, Volker J Schmid, - Zahra Amini Farsani	-	Journal of digital imaging	0	2022 Yes	methodology	Others	Bayesian inference, Maximum Entropy Technique (MET) with regularization functionals	Bayes	Bayes - Other	No	not applicable	not applicable	not applicable	not applicable (the paper is related to pharmacokinetic parameter estimation in DCE-MRI, not directly to drug therapy or vaccine development)	No	Commercial platform	Upon request to the authors	MATLAB, KernelDistribution, ksdensity, lasso, ridge, gmres
Measures of Uncertainty of Pharmacokinetic and Pharmacodynamic Parameter Estimates: A New Computerized Algorithm	of Serge Guzy, C Anthony Hunt -	-	-		1996 Yes	methodology	Others	Variance-covariance matrix (VCM) GBH algorithm (the new method, involves generating new hypothetical data sets and filling them to the model to estimate parameter reliability)	basic frequentist		Yes	Pain management and anti-inflammatory treatment; ICD-11 code: M79.1 (Other specified soft tissue disorders) or M79.0 (Rheumatism, unspecified)	d small molecule	(guess: preclinical o	The purpose of the r pharmacometric model is to provide a more accurate and reliable measurement of pharmacokinetic parameters, which is crucial for understanding drug pharmacokinetics and optimizing desing regimens in drug therapy development.	Yes	No	No	Not mentioned (the paper does not specify any software, packages, or programming languages used)
Michaelis-Menten pharmacokinetics based on uncertain differential equations	Zhe Liu, Rui Kang -		-		2022 Yes	methodology	QSP	Uncertainty theory, theory of uncertain differential equations, Beiler leability theory, Generalized morrant estimations, Expected value calculations, region calculations	UDE/SDE		Yes	not applicable (the paper is related to pharmacokinetics but does not specify a therapeutic area or disease being treated	•	(guess: preclinical o	The purpose of the model is to tr better represent dynamic noises in pharmacolinetics, which is crucial for understanding how drugs are metabolized and eliminated from the body. It is used to investigate pharmacokinetic indexes such as drug concentation, half-life, and area under the curve, which are important for drug therapy development.		No	No	Not mentioned (the paper does not specify any software or programming languages used)
Model selection for assessing the effects of doxombicin on triple- negative breast cancer or lines	Anna M Claudia, Resende, Emesto A B F - Lime, Regina C Almeida, Matthew T McKenna, Thomas E Yankeelov, M II Resende	-	Journal of Mathematical Biology	4	2022 Yes	application	Others	Bayesian calibration, Bayesian inference, multi-level Monte Carlo algorithm	Bayes	Bayes - calibration	Yes	Breast cancer; C50	small molecule	not specified	The purpose of the pharmacometric model is to evaluate treatment responses and identify the most accurate model for describing cell growth and response to doxorubicin, which can inform dose finding and understanding of how different cell lines respond to treatment.	No	Open source	Upon request to the authors	QUESO (Quantification of Uncertainty for Estimation, Simulation, and Optimization) library
Model-based process development for hydrophobic interaction chromatography by considering prediction uncertainty analysis	Yu-Xiang Yang, Shan-Jing Yao, Dong Qiang Lin	-	Journal of Chromatograp hy A	0	2025 Yes	application	Others	Bayesian inference with Markov Chain Monte Carlo (MCMC)	Bayes	Bayes - Other	Yes	not applicable (the paper is related to biopharmaceutical process development but does not specify a therapeutic area or ICD 11 code)		paper is related to drug therapy		No	Open source, Commercial platform	No	- CADET (chromatography analysis and design toolkit) - emoee (Python library for Markov Chain Monte Carlo)
Model-Based Robust Filtering and Experimenta Design for Stochastic Differential Equation Systems	Guang Zhao, Xiaoning Qian, Byung-Jun - I Yoon, Francis J Alexander, Edward R Dougherty	-	IEEE Transactions on Signal Processing	15	2020 Yes	methodology	Others	Bayesian uncertainty propagation, Mean Objective Cost of Uncertainty (MOCU), Intrinsically Bayesian Robust (IBR) filtering	Bayes	Bayes - Other	Yes	not specified	not specified	not specified	Estimation of drug concentration levels	Yes	No	No	Not mentioned (no specific software or programming languages are mentioned in the paper)
	Alexandra Krieger, Nicki Panoskaltsis, - Athanasios Mantalaris, Michael C Georgiadis, Efistratios N Pistikopoulos	-	IEEE Transactions on Biomedical Engineering	35	2014 Yes	application	Others	local and global sensitivity analysis, Probabilistic sensitivity analysis using the Sobol method and high-dimensional model representation (HDMR) with GUI-HDMR software	Sensitivity analysis	SA - analytical	Yes	Anesthesia; ICD 11 code: 5A00.0Z (Anesthesia, unspecified)	small molecule	not specified	The purpose of the pharmacometric model is to optimize drug administration by identifying individual pharmacodynamic parameters for personalized health care and safe model predictive control.	No	Commercial platform	No	GUI-HDMR software, gPROMS
Modeling Macroinvertebrate Community Dynamics in Stream Mesocosms Contaminated with a Pesticide	Mira Kattwinkel, Peter Reichert, Johanna - Ruegg, Matthias Liess, Nele Schuwirth	-	Environmental Science and Technology	23	2016 Yes	application	Others	Bayesian inference, Bayesian parameter inference, uncertainty propagation, interval analysis	Uncertainty propagation, Bayes	UP - non prob, Bayes - Other	No	not applicable	not applicable	not applicable	not applicable (the paper is related to ecotoxicology, not drug therapy or vaccine development)	No	No	No	R programming language (in parts)
Modelling and sensitivity	Karel Folens, Séverine Thérèse, F.C m Mortier, Janis Baeten, Karen Couvreur, Robin Michelet, Krist V. Gemaey, Thomas De Beer, Gijs Du Laing, Ingmar Nopens	-		3	2016 Yes	application	Others	Global Senstilvity Analysis (GSA), Generalised Likelihood Uncertainty Estimation (GLUE), Sobol sampling	Sensitivity analysis, basic frequentist	SA - simulation, Freq - likelihood	No	not applicable	not applicable	not applicable	not applicable (the paper is focused on environmental and economic aspects of platinum recovery rather than drug therapy development)	No '	No	No	SigmaPlot 13
Modelling and simulation of variability and uncertainty in toxicokinetics and pharmacokinetics	Ivan Nestorov -	-	Toxicology Letters	62	2001 Yes	review	РВРК	- Fuzzy computations - MC simulationed	Uncertainty propagation	UP - non prob	Yes	e.g. Psychiatric disorders; 6B0Z	e.g. small molecule	Preclinical (guess)	e.g. study underlying processes and perform animal-to-human extrapolations	No	No	No	Not mentioned (no specific software or programming language is mentioned in the paper)

Modelling ecotogical and Artur Radomyski, Elisa Giublato, Philippe - human exposure to POPs. Giffey, Andrea Critto, Céline Brochot, in Venice lagoon - Part III. Antonio Marcomini, D. Barcelo Quantitative uncertainty and sensitivity analysis in coupled exposure models	-	Science of the Total Environment	23	2016 Yes	application	РВРК	Probabilistic distribution functions (PDFs) for parameter values Monte Carlo sampling for probabilistic simulations Morris screening method Regression-based sensitivity analysis Extended Fourier Amplitude Sensitivity Test (EFAST)	Sensitivity analysis	SA - simulation	No	not applicable	not applicable	not applicable	not applicable (the paper is related to environmental exposure modeling, not drug therapy or vaccine development)	No	Open source	No	MERLIN-Expo
Modelling of oscillatory contact response in lonses subharn Gabrielsson, Mats Jistrand using a Bayesian population approach for evaluation of dexamethasone suppression test protocols	-	Journal of Pharmacokineti cs and Pharmacodyna mics	3	2019 Yes	application	Others	Bayesian hierarchical modeling, Non-linear mixed-effects (NLME) approach, Posterior predictive checks (PPCs), Bayesian inference using Stan, Credible intervals (Cls)	Bayes	Bayes - hierachical	Yes	Pituitary pars intermedia dysfunction (PPID)	small molecule	not specified (the paper is related to drug therapy but does not specify the stage of drug development)		No	Open source	No	Stan version 2.18.0, CmdStan, NUTS sampler, Hamiltonian Monte Carlo (HMC)
Modeling the exposure to P Cfffory, B Afonso, A Atlengohl, Z chemicals for risk. Banajac, J Belevens. C Boroth, A Otto, T on Seminary of S	-			2016 Yes	methodology	РВРК	Probability density functions (PDFs) for uncertain parameters Amoria approach (one-factor-at-a-time screening design) Regression-based approaches Variance-based methods (Sobol, FAST, EFAST) Probabilistic simulation	Sensitivity analysis	SA - simulation	No	not applicable	not applicable	not applicable	Not applicable	No	Open source	No	MERLIN-Expo
Multi-view uncertainty deep Qiong Tan, Yuqi Wen, Yong Xu, Kunhong - forest: An nonvative deep to forest equipped with uncertainty estimation for drug-induced liver injury prediction	-	Information Sciences	4	2024 Yes	methodology	ML	Single Deterministic Methods Bayesian Methods Ensemble Methods Test-Time Augmentation Methods Opinion as an alternative to probability	Bayes, Other	Bayes - Other	Yes	Liver diseases; ICD 11 code: 1E40.0 (Drug- induced liver injury)	not specified	(guess: preclinical o	The purpose of the model is to r aid in the early identification of potential liver-related adverse effects associated with drug candidates, improving drug development efficiency and patient safety.	Yes	No	No	scikit-leam
Multispocies Machine Learning Phedictions of In Action of Interest Clearance With Uncertainty Quantification Analyses	-	Molecular Pharmaceutics	22	2022 Yes	application	ML	Ensemble variance for epistemic uncertainty estimation Aleatorc uncertainty: large-scale data variability analysis	Other		Yes	not specified	not specified	Lead optimization (guess)	The purpose of the model is to predict intrinsic clearance (CL int) for new compounds to facilitate early informed decisions for compound prioritization in drug development.	Yes	Open source	No	- PyTorch - chemprop (version 1.3.1) - RDKit (version 2019.03.3) - scikit-learn library - XGB (Extreme Gradient Boosting)
Nearest Neighbor Gaussian Process for Andy Lixw, Matthew Tudor Quantitative Giructure- Activity Relationships		Journal of Chemical Information and Modeling	8	2020 Yes	methodology	ML	- Gaussian Processes (GPs) for native uncertainty estimation - QSAR model	Other		Yes	not specified	not specified	Discovery (guess)		Yes	Open source	Open source	- Python (programming language) - scikit-leam (library) - LightGBM (library) - annoy (python package) - scikit-optimize (package)
Normalizing Flow-Based Clark Flow (Fang, Zejun Wang, Cl Xia, Yingchao - Liu, Bao Wang, Zhaowei Cheng, Jan Cheng, Xinyu Jin, Rullang Bal, Lanjuan Li Contrast-Chainaced Magnetic Resonance Imraging	-	IEEE Transactions on Biomedical Engineering	1	2024 Yes	methodology	ML	- normalizing flow model-based parameters distribution estimation neural network (FPCEN) Normalizing flow models for posterior distribution estimation - Maximum likelihood estimation (MLE) loss - Standard deviation of marginal distributions for uncertainty estimation - Coefficient of variation (COV) for relative uncertainty estimation	Other		No	not applicable	not applicable	not applicable	not applicable (the paper is focused on improving diagnostic accuracy in glioma grading, not on drug therapy or vaccine development)	Yes	Open source	Open source	PyTorch
On implementing Jeffleys' Andrew P Grieve substitution Reithood for Bayesian inference concerning the medians of unknown distributions		Pharmaceutical statistics	1	2022 Yes	application	Others	Bayesian inference using Jeffreys' Substitution Likelihood (JSL), equal-tailed credible intervals, Highest Posterior Density (HPD) intervals, Bayes factors, lipping point analysis	Bayes	Bayes - Other	Yes	Infections; ICD 11 code: Not specified in the paper, but related to bacterial infections	small molecule	Clinical trials (guess	Bioequivalence assessment: To determine whether two formulations of a drug have comparable blood levels by comparing the area under the plasma concentration time profile (AUC).	Yes	Open source	Upon request to the authors	R programming language (Bääth's R code for JSL)
On the computation of Diego De Pereda, Sergio Romero-Vivo, - output bounds on parallel singuis pharmacokreate models with parametric surcertainty	-	Mathematical and computer modelling	5	2013 Yes	methodology	Others	- Monte Carlo methods - Region-based approaches - Interval analysis - Monotonicity analysis	Uncertainty propagation	UP - prob - basic sim	Yes	e.g. Endocrine disorders (5A80) - Diabetes mellitus	e.g. biologics	not specified (the paper is related to drug therapy but does not specify the stage of development)	Improving the accuracy of pharmacokinetic models for drug therapy development	Yes	Commercial platform	No	Matlab IntLab (toolbox for interval analysis) VNODE-LP (package for interval analysis)
On the incorporation of chemical-specific Harvey J Clewell III, Melvin E Andersen, - Bas J Blaauboer Information in risk assessment	-	Toxicology Letters	33	2008 Yes	review	РВРК	Parameter sensitivity analysis Monte Carlo uncertainty analysis Hierarchical Bayesian analytical methods (Markov chain Monte Carlo analysis)	Sensitivity analysis, Bayes	Bayes - hierachical, SA - simulation	Yes	not specified	not specified	not specified	the paper is related to chemical risk assessment	No	No	No	- no software used
On the quantification of inter-fest variability in ecotoxicity data with application to species sensitivity distributions				2012 Yes	methodology	Others	Bayesian hierarchical modeling, Markov chain Monte Carlo (MCMC) sampling methods, Jeffreys prior for non-informative prior distribution	Bayes	Bayes - hierachical	No	not applicable	not applicable	not applicable	Not applicable (the paper is related to ecotoxicological hazard assessment and not to drug therapy or vaccine development)	Yes	Open source	Open source	R
On the uncertainties of photon mass energy- photon mass energy- absorption coefficients and their artiso for adultion dosmetry	-	Physics in Medicine and Biology	75	2012 Yes	application	Others	- Stalistical methods for uncertainty estimation. Monte Carto (MC) calculations for Type A uncertainties. - Methods for Type B uncertainties. Assuming a normal stribution and evaluating the standard deviation; using rectangular of transputer distributions, invoking the GUM concept of a coverage factor (v. 2) to 95% confidence. - Combination of Type A and Type B uncertainties in quadrature to obtain the combined standard uncertainty.	basic frequentist, Other		No	not applicable	not applicable	not applicable	Not applicable (the paper is related to radiation dosimetry, not drug therapy or vaccine development)	No	Commercial platform	Commercial platform with given parameters	
On the Use of Hierarchical Ralph L Kodell, James J Chen - Probabilistic Models for - Characterizing and Managing Uncertainty in RskVSafety Assessment		Risk Analysis	9	2007 Yes	methodology	Others	Hierarchical probabilistic models Bayesian hierarchical model Monte Carlo simulation for uncertainty propagation	Bayes	Bayes - hierachical	Yes	not specified	not specified	not specified	risk/safety assessment	No	No	No	Monte Carlo simulation (no specific software mentioned)
Ontogeny equations with probability distributions for May (Sulkiwa, Jain Wang, Gibert of anthropomorphic measurements in preterm and lemin necessates and lemin electricists are electricists and lemin electricists and lemin electricists and lemin electricists are electricists and lemin electricists and lemin electricists and lemin electricists and lemin electricists	-	Computational Toxicology	10	2019 Yes	application	РВРК	Monte Carlo simulations, probabilistic distributions (normal and log-normal), uncertainty propagation through simulation	Uncertainty propagation	UP - prob - basic sim	Yes	Antimicrobial therapy; ICD 11 code: Not explicitly provided in the paper, but potentially related to codes under "Infections" or "Antimicrobial resistance."	small molecule	not specified	The purpose of the pharmacometric model is to support the development of PBPK models for neonates, which is a critical step in drug therapy development, particularly for drugs like PIP and TAZ.	No	Open source	No	R, Excel, SigmaPlot
Optimal dese and Guisseppe Pesentii, Marco Foppoli, Davide - Marca Mindualizad drug administration using pharmacokinetic models x	-	Computers and Chemical Engineering	0	2021 Yes	application	РВРК	Monte Carlo analysis, uncertainty propagation, interval analysis, frequentist	Uncertainty propagation	UP - prob - basic sim	Yes	Oncology; 2A85.0	small molecule	not specified (the paper is related to optimizing dosing protocols for an existing drug, but the specific stage of drug development is not mentioned)	1	No	Commercial platform	No	MATLAB R2020b

Parameter estimation of fractional uncertain differential equations	Cheng Luo, Guo-Cheng Wu, Ting Jin		Soft Computing - A Fusion of Foundations, Methodologies	1	2024 Yes	methodology Others	uncertainty theory, uncertain differential equations generalized moment estimation	UDE/SDE		Yes	not specified	not specified	not specified	The purpose of the model is to account for uncertainty in drug metabolism (e.g. Reaction rate in chemical kinetics) due to dynamic internal and external factors.	Yes	No	No	Not mentioned (the paper explicitly states that no data or code was used)
PARAMETER	Laurent Granvilliers. Jorge Cruz. Pedro		and Applications						UP - non prob					improving understanding and prediction of drug pharmacokinetics under uncertain conditions. The purpose of the model is to				RealPaver
ESTIMATION USING INTERVAL COMPUTATIONS *	Barahona		SIAM Journal on Scientific Computing	26	2004 Yes	methodology Others	Interval analysis	propagatión			not specified	not specified	not specified	predict drug concentrations in body fluids and calculate clinically useful parameters such as half- life, volume of distribution, clearance, and bioavailability, which are essential for dose finding and understanding pharmacokinetic properties.		No	No	
application and characterisation of the uncertainty of C max estimate: A case study approach	Hequn Li, Joe Reynolds, Ian Sorrell, David Sheffleld, Ruth Pendlington, Richard Cubberley, Beate Nicol, Lawrence Lash	. <u>.</u>	-		2022 Yes	methodology PBPK	Bayesian statistical model, Hamiltonian Monte Carlo algorithm				topically applied chemicals, e.g. analgesic	small molecule		predicting kinetic profiles for topically administrated drugs	No	Open source, Commercial platform	No	- GastroPlus 9.8 - PyStan 2.19 - Python 3.8 - Matplotlib 3.3 - NumPy 1.19 - Pandas 1.2 - SciPy 1.6
Performance of recurrent neural networks with Monte Cato dropout for predicting pharmacokineti parameters from dynamic contrast-enhanced magnetic resonance imaging data	Kenya Murase, Atsuahi Nakamoto, Noriyuki Torniyama				2025 Yes	application ML	Monte Carlo dropout (MCD)	Bayes	Bayes - ML	No	not applicable	not applicable	not applicable	not applicable (the paper is related to predicting pharmacokinetic parameters for medical treatment planning and prognosis prediction, not directly to drug therapy development)	Yes	Open source	No	- Python 3.10.12 - Keras 3.5.0 - Tensorflow 2.17.1 - DCENET (https://ghtub.com/silvercham plon/DCENET) - pydcenri (https://ghtub.com/weicheb/py dcemr/blob/master) - deep_Lvim (https://ghtub.com/sebbarb/d eep_Lvim)
Pharmacokinetic model based on multifactor uncertain differential equation	Z Liu, Y Yang		Applied Mathematics and Computation	16	2020 Yes	methodology Others	Uncertainty theory, theory of uncertain differential equations a-paths, generalized moment estimations, confidence intervals	UDE/SDE, basic frequentist		Yes	not specified	not specified	paper is related to	experiments with drugs, design of new drugs, reassessment of old drugs. improvement of drug	No	No	No	Not mentioned (no software or programming languages are mentioned in the paper)
Pharmacokinetics with intravenous infusion of two compartment model based on Liu process	o-		Communication s in Statistics - Theory and Methods	4	2023 Yes	methodology Others	Uncertainty theory, theory of uncertain differential equations Liu processes, generalized moment estimation, uncertain hypothesis test, linear uncertainty distribution L(0, 1), confidence intervals	frequentist		Yes	not specified	not specified	not specified	The purpose of the model is to provide essential pharmacokinetic parameters.		No	No	not specified
Physics-informed covariance kernel for model-form uncertainty quantification with application to turbulent flows	Jin-Long Wu, Carlos Michelén-Ströfer, Heng Xiao, Kevin T Crofton		Computers & Fluids	21	2019 Yes	methodology Others	Gaussian processes, physics-informed covariance kemel, Bayesian inference, Karhunen-Loève (KL) modes, Ensemble Kalman inversion	Uncertainty e propagation	UP - prob - surrogate	No	not applicable	not applicable	not applicable	Not applicable (the paper is related to turbulence modeling and not drug therapy or vaccine development)	Yes	Open source	No	OpenFOAM, simpleFoam, SIMPLE algorithm
machine learning- enhanced read-across approach for interspecies extrapolation	Yaoxing Wu, Gabriel Sinclair, Raghavendhran Avanasi, Alison Pecquet, Shoji Nakayama		Environment International	3	2024 Yes	application ML	Local sensitivity analysis, Monte Carlo simulations for uncertainty analysis	Sensitivity analysis			not applicable	not applicable	not applicable	related to agrochemical risk assessment, not drug therapy or vaccine development)	No	Open source	Open source	- RStudio v2023.06.1 + 524 - R package deSolve v1.40 - R package FME v1.3.6.3 - statsmodels 0.14.1 in Python IDLE 3.12.2 - WebPlotDigitizer v4.6
Modeling of the Bisphenois BPA, BPS, BPF, and BPAF with New Experimental Metabolic Parameters: Comparing the Pharmacokinetic Behavior of BPA with its Substitutes	Cecle Karrer, Thomas Roiss, Natalie Von Goetz, Darjs Garmec Skédert, Lucija Peteršin Maši, Konrad Hungerbühler		Environmental Health Perspectives	84	2018 Yes	application PBPK	2D Monte Carlo analysis, probabilistic sensitivity analysis, uncertainty progagation, trapezoidal distributions, truncated normal distributions, coefficients of variation (CV)	Sensitivity analysis, Uncertainty propagation	SA - Other, UP - Other	No	not applicable	not applicable	not applicable	Not applicable (the paper is related to environmental chemical exposure and not drug therapy or vaccine development)		Open source	Open source	R, version 3.3.2
Population PBPK modeling using parametric and nonparametric methods of the Simcyp Simulator, and Bayesian samplers	Janak R Wedagedera J, Anthonia Afuape. Siki Kahyan Chimamila, Hiosoh Mornij I, Robert Leary J, Mike Dunlavey J, Richard Matthews, Khade Adouljali, Masoud Jamei J, Frederic Y Bols, Janak R Wedagedera		CPT: Pharmacometri cs & Systems Pharmacology	14	2022 Yes	methodology PBPK	- Frequentist methods: Quasi-random parametric expectation maximization (QRPEM) (QLC: onlinece intervals). Nonparametric adaptive grid estimation (NPAG) (QLC: none) - Bayesian methods: Metropolis-fastings (MH; harithonian Markov Chain Monte Carlo (HMCMC) (UQ: posterior distributions)	basic frequentist, Bayes	Bayes - Other		Respiratory diseases; CA40.0 (Asthma), CA40.1 (COPD)	small molecule	not specified	The purpose of the pharmacometric model is to aid in drug therapy development by testing parametric assumptions, improving simulations for clinical trials, and estimating population variability for drug-drug interactions, special populations, and bioequivalence assessments		Open source, Commercial platform	No	- Simopp version 20 - GNU MCSim - R package rstan - R
Liver Injury with Bayesian Machine Learning	Dominic P Williams, Stanley E Lazic, Alson J Foster, Elizaveta Semenova, Paul Morgan		Chemical Research in Toxicology	76	2019 Yes	application ML	Bayesian machine leaning with data-driven prior distribution Laplace distribution for § parameters, and propagation of uncertainty through predictions	Bayes	Bayes - ML		Liver diseases; ICD 11 code: K76.0 (Drug- induced liver injury)		not specified	The purpose of the model is to predict drug-induced liver injury (DIL1) sevently and uncertainty, guiding the selection of optimal drug candidates and informing further studies to mitigate potential risks during drug development.	No	Open source	Open source	- Stan (version 2.18) - RStan (version 2.18.2) - Python (PyMC3) - Julia (Turing)
related to liver function using probabilistic machini learning	Flavio M Morelli, Marian Raschke, Natalia Jungmann, Michaela Bairlein, Marina Garcia De Lomana, Mathieu Vinken, A B S T R A C T		Toxicology	0	2025 Yes	methodology ML	Bayesian inference Logistic regression with independent Gaussian priors Logistic regression with a regularized horseshoe prior Bayesian Addrew Regression Trees (BART) Gaussian Process with a Mattern Kennel (GP) No-Li-Tum-Sampler (MUTS) algorithm Markov Chain Monte Carlo (MCMC) chains Uncertainty propagation	Bayes			Liver function; K71.0 (Drug-induced liver injury)	not specified	Drug discovery (guess)	predicting in vitro assay outcomes related to liver function and DILI risk	s Yes	Open source		- PyMC - PyMCBART - BlackJAX - No-U-Tum-Sampler (NUTS) - arViz - UMAP
Prediction of Multi- Pharmacokinetics Property in Multi-Species: Bayesian Neural Network Stacking Model with Uncertainty	Yuanyuan Zhang, Zhiyin Xie, Fu Xiao, Jie Yu, Zhehuan Fan, Shihui Sun, Jiangshan Shi, Zunyun Fu, Xutong Li, Dingyan Wang, Mingyue Zheng, Xiaomin Luo, Mingyue Zheng - Xiaomin Luo -, Yuanyuan Zhang -		Molecular Pharmaceutics	0	2024 Yes	application ML	Bayesian Neural Networks (BNN)	Bayes	Bayes - ML	Yes	not specified	not specified	drug discovery	The purpose of the PKStack model is to predict pharmacokinetic parameters for drug therapy development, specifically for optimizing and assessing PK properties before early phase clinical trials.	No	No	No	- scikit-leam 1.0.2 - lightgbm 3.3.5 - xgboost 1.6.2 - DeepChem 2.7.2 - SHAP

Predictive inference for best linear combination of biomarkers subject to limits of detection	Tahani Coolen-Maturi		Statistics in Medicine	10	2017 Yes	methodology Others	Nonparametric Predictive Inference (NPI) using lower and upper probabilities to quantify uncertainty	Other		No not applica	ole not applicable	not applicable	Not applicable (the paper is related to diagnostic test accuracy, not drug therapy or vaccine development)	Yes	No	No	not specified
Probabilistic design space	Qingbo Meng, David Bogle, Vassilis M Charltopoulos, A B S T R A C T		European Journal of Pharmaceutical Sciences	0	2025 Yes	methodology ML	Bayesian approach, surrogate modeling, joint normal uncertainty delifeution, covariance matrix computation	Bayes, Uncertainty propagation	UP - prob - surrogate, Bayes - Other	Yes not applica paper is re pharmaceu manufactu processes not specify therapeutik drug)	ated to molecule dical ng out does a	pharmaceutical manufacturing process	Probabilistic design space exploration and optimization for a fluid bed drying process	Yes	No	No	gPROMS FormulatedProduct digital platform, MATLAB, Minitab (version 21)
Probabilistic Framework for the Estimation of the Adult and Child Toxicokinetic Intraspecies Uncertainty Factors	Michael Pelekis, Mark J Nicolich, Joseph S Gauthier		Risk Analysis	35	2003 Yes	methodology Others	Probability density functions (PDFs) for parameter description Monte Carlo simulation for probabilistic analysis Uncertainty propagation through repeated simulations Probabilistic sensitivity analysis through repeated simulations	Sensitivity analysis, Uncertainty propagation	SA - simulation, UP - prob - basic sim	Yes not specifik	d not specified	not applicable	the paper is related to toxicokinetics and risk assessment	Yes	Commercial platform	No	ACSL SIM, Version 11.8.4 (Aegis Technologies Group, Huntsville, AL)
Probabilistic Risk Assessment -The Keystone for the Future of Toxicology	Thomas Hartung, Alexandra Maertens, Erniy Golden, Thomas H Luechtefeld, Sebastian Hoffmann, Katya Tsaloun		-		2022 Yes	review Others	- Monte Carlo method - first-and second-order reliability method (FORM/SORM) - non-parametric and parametric bootstrap methods - maximum likelithod estimation - Bayesian networks - probabilistic physiology-based pharmacokinetic (PBPK) modelibilistic physiology-based pharmacokinetic (PBPK) - Bayesian rapproaches - value of information analysis	Uncertainty propagation, Bayes, basic frequentist	UP - Other, Bayes - ML, Bayes - Other, Freq - Other, Freq - resampling	Yes not specific	d not specified		the paper is primarily about probabilistic risk assessment in toxicology	No	No	No	- no software used
Prediction of Continuous	Joshua Durso-Finley, Berardino Barile, Jean-Pierre Falet, Douglas L Amold, Nick Pawfowski, Tal Arbel		International Conference on Medical Image Computing and Computer- Assisted Intervention	2	2024 Yes	application ML	Sampling-based variance estimation using Neural Stochastical Offerential Equations (NSDEs) with Monte Cards similation (junning NSDE multiple times with different Brownian noise samples)	UDE/SDE		Yes particularly diseases w term, comp heterogene evolutions cure, e.g. I diseases; (th long biologics ex, ous and no eurological	ule, Phase III or Phase IV (guess)	e identification of subpopulations, prediction of treatment effects	No	No	No	Not mentioned (the paper does not explicitly mention any specific software, packages, or programming languages used)
Propagation of Population PK and PD Information Using a Bayesian Approach: Dealing with Non-Exchangeability	Aristides Dokoumetzidis, Leon Aarons		Journal of Pharmacokineti cs and Pharmacodyna mics	4	2005 Yes	methodology Others	Bayesian hierarchical modeling, Markov Chain Monte Carlo (MCMC) methods, parametric priors (normal, Wishart, Gammi distributions), quantile-quantile (Q-Q) plots, standard deviation of MCMC chains	Bayes a	Bayes - hierachical	Yes not applica paper is re drug thera; developme not specify therapeutik	ated to y nt but does a	Early clinical trials (guess)	The purpose of the model is to implement a conservative prior in Bayesian analysis to deal with non-exchangeability between prior and test populations, and to assess the statistical power of detecting differences in drug potency, which is relevant to dru therapy development.		Open source	No	WinBUGS
QSAR modeling without descriptors using graph convolutional neural networks: the case of mutagenicity prediction	Chiakang Hung, Giuseppina Gini		Molecular diversity	24	2021 Yes	methodology ML	Bayesian Graph Convolutional Neural Networks (GCNs), Aleatoric and Epistemic uncertainty estimation	Bayes	Bayes - ML	Yes not specific	d not applicable	Preclinical (guess)	mutagenicity prediction	No	Open source	Open source	Python, RDKit, TensorFlow
	M Sundqvist, A Lundahl, Någård, U Bredberg, P Gennemark		CPT: Pharmacometri cs & Systems Pharmacology	11	2015 Yes	review Others	Monte-Carlo simulation, probabilistic sensitivity analysis, log- normal distributions, fuzzy computations, interval analysis	Uncertainty propagation	UP - non prob, UP - prob - basic sim	paper does	red (the not specified not specify utic area or ICD 11	Preclinical (guess)	dose finding, ranking lead- optimization compounds, informing design of early clinical trials	No	Commercial platform	No	Matlab
Quantifying Uncertainty Bounds in Anesthetic PKPD Models	Stéphane Biblan, Guy A Dumont, Mihai Huzmezan, Craig R Rües		Annual International Conference of the IEEE Engineering in Medicine and Biology Society	8	2004 Yes	methodology Others	Multiplicative unstructured uncertainty weighting function Frequency domain analysis Interval analysis (envelope method) Uncertainty propagation	Uncertainty propagation	UP - non prob	Yes Anesthesicode: 6A0 (Anesthesi	ICD 11 small molecule .0)	not specified (the paper is related to optimizing drug delivery systems rather than developing new drugs)	The purpose of the model is to quantify uncertainty bounds in PKPD models to improve controller design for anesthetic drug delivery, aiming to reduce uncertainty and enhance stability and performance of closed-loop systems.		No	No	Not mentioned (no software or programming languages are mentioned in the paper)
Quantitative global sensitivity analysis of a biologically based dose- response pregnancy model for the thyroid endocrine system	Annie Lumen, Kevin Mcnally, Nysia George, Jeffrey W. Fisher, George D. Lebou	10.3389/fphar 2015.00107	Frontiers in Pharmacology	25	2015 Yes	methodology PBPK	Moris screening method Gaussian Emulation process Gaussian Process regression for surrogate modeling Probabilistic sensitively analysis (main and total effect sensitivity) indices) Islain hypercube sampling design	Sensitivity analysis, Uncertainty propagation	UP - prob - surrogate, SA - simulation	No no	not applicable	paper is about methodology and	not applicable (the paper is focused on environmental exposure and thyroid function, R not drug therapy development)	Yes	Open source, Commercial platform	No	- Advanced Continuous Simulation Language (acalX) version 3.0 - Digitize11 1.5 - Gaussian Emulation Machine (GEM) software - Caussian Process regression model - R scripts from appendix of McNally et al. (2011) (just for Lowy plots)
	Gunjan Chorasiya, Rudra Prakash, Shaunak Sen	10.1109/LCSY - S.2023.32895 69	IEEE Control - Systems Letters		2023 Yes	methodology Others	- Interval Analysis - Banach Contraction Theorem	Uncertainty propagation	UP - non prob	No not applica	ole not applicable	not applicable	Not applicable	No	No	No	n/a
Real-Time Personalised Pharmacokinetic- Pharmacodynamic Modelling in Propotol Anesthesia through Bayesian Inference	Nicolò Malagutti, Grace McGinness, Dilip A. Nithyanandam	10.1109/EMBC - 40787.2023.1 0339991	Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS	2	2023 Yes	application Others	Bayesian inference implemented through a particle filter algorithm	Bayes	Bayes - Other	Yes Anesthesis code not e mentioned paper, but anesthesis	n the	paper is about optimizing drug therapy rather than	The purpose of the pharmacometric model is to refin a prior pharmacokinetic-pharmacokinetic-pharmacokynamic model using Bayesian inference to estimate patient-specific parameters in reflection of Individual patients' responses to propofol for safe and effective anesthesial management.		No	No	Not mentioned (no specific software, package, or or programming languages are mentioned in the paper)
Reassessing benzene risks using internal doses and Monte-Carlo uncertainty analysis.	Louis Anthony Cox Jr.	10.1289/ehp.9 - 61041413	Environmental - Health Perspectives		1996 Yes	methodology PBPK	Bayesian Monte Carlo uncertainty analysis with maximum- entropy probabilities and Bayesian conditioning	Bayes	Bayes - Other	No not applica	ole not applicable	not applicable	not applicable	Yes	No	No	Not mentioned (the paper does not specify any software or programming languages used for the uncertainty quantification model)
1																	

Representing model V	Venyu Li, Arun Hedge, James Oreluk, Andrew Packard, Michael Frenklach	10.1137/19M1 - 270185	SIAWASA Journal on	4	2021 Yes	methodology	Others	- Bayesian inference	Bayes, Uncertainty		No not app	licable not applicable	not applicable	not applicable	Yes	Open source, Commercial	Open source	- MATLAB - R2RDC toolbox
bound data collaboration.	niurew Packaro, Michael Frenkach	2/0165	Uncertainty Quantification					Bayesian fusion matching (for companison) bound-to-bound data collaboration (B2BDC) surrogate modeling model discrepancy analysis	propagation, Sensitivity analysis	surrogate, Bayes - Other, SA - analytical, Bayes - calibration						platform		- BABLE (BRIDES) - fmincon (MATLAB function) - SeDuMi (SDP solver) - CVX (modeling system for convex optimization) - fseminf (MATLAB function)
cancer risk to R	Robinan Gentry, Tammie R Covington, C Eric Hack, Raymond M David, David A	10.1016/j.yrtph - .2005.12.007	Regulatory toxicology and pharmacology : RTP	48	2006 Yes	application	PBPK	Bayesian inference Markov Chain Monte Carlo (MCMC) analysis Bayesian hierarchical modeling potential scale reduction for convergence monitoring sequential calibration approach	Bayes	Bayes - hierachical	No not app	licable not applicable	not applicable	not applicable (the paper is related to environmental health risk assessment, not drug therap or vaccine development)	Yes	Open source, Commercial platform	No	- GNU MCSim - TOX_RISK (Version 5.3)
Risk-Based Environmental B Remediation: Bayesian B Monte Carlo Analysis and the Expected Value of Sample Information	M. E. Dakins, J. E. Toll, M. J. Small, K. P. Brand	10.1111/j.1539 6924.1996.tb0 1437.x	Risk analysis : an official publication of the Society for Risk Analysis	97	1996 Yes	methodology	Others	Bayesian Monte Carlo analysis Monte Carlo methods Sensitivity analysis Expected value of including uncertainty (EVIU)	Bayes	Bayes - Other	No not app	licable not applicable	not applicable	Not applicable (the paper is related to environmental remediation, not drug therapy or vaccine development)	Yes	No	No	Not mentioned (the paper does not specify any software, packages, or programming languages used in the study)
Separating uncertainty D and physiological variability J in human PBPK modelling: The example of 2-propanol and its metabolite acetone.	D. Huizer, R. Oldenkamp, A.M.J. Ragas, I.G.M. van Rooij, M.A.J. Huijbregts	10.1016/j.toxle - t.2012.08.016	Toxicology Letters	18	2012 Yes	application	РВРК			SA - simulation, Bayes - Other	No not app	icable not applicable	paper is focused or PBPK modeling for	not applicable (the paper is n related to toxicology and risk assessment, not drug therapy or vaccine development)	Yes	Open source, Commercial platform	No	- IndusChemFate (PBPK tool, freeware) - Microsoft Excel (for the IndusChemFate model) - Crystal Ball (Oracle, version 11) (for nested Monte Carlo simulation)
Simple Relations Between L Administered and Internal Doses in Compartmental Flow Models	· ·	10.1111/j.1539 6924.1995.tb0 0313.x	Risk Analysis -		1995 Yes	methodology	PBPK	- AUC area under curve analysis	Other		No not app	not applicable	not applicable	not applicable	No	No	No	nía
	Robinan Gentry, Annette M Shipp	10.1016/S037 - 8- 3820(99)0007 5-2	Fuel - Processing Technology		2000 Yes	application	РВРК	- Benchmark dose approach - Monte Carlo uncertainty analysis - Hypercube method - PBPK modeling - Uncertainty factor application	Uncertainty propagation	UP - prob - basic sim	No not app	licable not applicable	not applicable	Not applicable	No	No	No	n/a
transport, and A	kufesa N Edgirlon, Erici I Zimmerman. Nasana Yasijeva, Sharyn D Baker, John ∋ Panetta	10.1007/s0028 - 0-016-3018-6	Cancer - chemotherapy and and pharmacology		2016 Yes	application	РВРК	- uncertainty propagation analysis - global sensitivy analysis using partial rank correlation coefficients (PRCC) - frequentits pramater estimation via weighted least squares - Latin typercube sampling (LHS) for uncertainty analysis/propagation - partial rank correlation coefficients (PRCC)	Uncertainty propagation, Sensitivity s analysis, basic frequentist	UP - prob - basic sim, SA - simulation	No not app	icable not applicable	not applicable	not applicable (The purpose of the pharmaconetic model is to evaluate the complex mechanisms of sorafenib metabolism and transport, guide future extrapolism to a human model, understand sorafenib- torium of the properties of the sorafenible of the properties of the social properties of the properties of sorafenible down in individualizing sorafenib down by considering genetic variations, and optimize down when combined with genemic data;		Commercial platform	No	- PK-Sim vention 5.3.2 - MABI Toolbox for MATLAB vention 3.3.2 - MATLAB
Statistical analysis of a general adsorption kinetic C model with randomness in liks formulation. An application to real data.	Cortés, Ana Navarro-Quiles, Sorina-	10.46793/mate https://doi.org/ h.90-1.019A 10.46793.org h.90-1.019A	fC Communication	2	2023 Yes	methodology	Others	- Random Least Mean Square (RLMS) method - Bayesian technique	Bayes	Bayes - Other	No not app	not applicable	not applicable	Not applicable	Yes	Open source, Commercial platform	No	- Mathematica - RStudio - WinBUGS - R2Winbugs package - coda package
Statistical analysis of Clewell et al. PBPK model of trichloroethylene kinetics	rederic Yves Bois	10.1289/ehp.0 - 0108s2307	Environmental Health Perspectives	63	2000 Yes	application	PBPK	Bayesian hierarchical population statistical model Markov chain Monte Carlo (MCMC): Gibbs sampling and -Metropolis-Hasting sampling uncertainty propagation through posterior parameter distributions and geometric standard deviations (GSDs)	Bayes	Bayes - hierachical	No not app	licable not applicable	not applicable	not applicable (the paper is focused on toxicology and risk assessment rather than drug therapy development)	Yes	No	Open source	GNU MCSim
Statistical Analysis of Fisher et al. PBPK Model of Trichloroethylene Kinetics	rederic Yves Bois	10.1289/ehp.0 - 0108s2275	Environmental - Health Perspectives		2000 Yes	application	PBPK	Bayesian hierarchical population modeling MCMC techniques for uncertainty propagation	Bayes	Bayes - hierachical	No not app	licable not applicable	not applicable	not applicable	Yes	Open source	No	GNU MCSim
		10.1289/ehp.0 - 0108s5883	Environmental - Health Perspectives		2000 Yes	methodology	РВРК	Bayesian hierarchical statistical framework Markov chain Monte Carlo (MCMC) methods multilevel models of uncertainty/variability	Bayes	Bayes - hierachical	No not app	licable not applicable	not applicable	Not applicable (the paper is related to chemical risk assessment, not drug therapy or vaccine development)	Yes	No	No	Not mentioned (the paper discusses methodological approaches but does not specify software or programming languages used)
hazardous terrestrial H concentrations estimated with aquatic ecotoxicity data		mosphere.201 3.05.007	Chemosphere	13	2013 Yes	methodology		- Monte Carlo simulations - Quantitative structure-activity relationship (QSAR) - Uncertainty propagation	propagation	UP - prob - basic sim		licable not applicable	not applicable	related to environmental risk assessment, not drug therapy or vaccine development)	Yes	Commercial platform	No	Crystal Ball (Oracle, Release 11.1.2.0.00) in Microsoft Excel
surface methods (SRSMs) for uncertainty propagation: application to environmental and biological systems.	S S Isukapalli, A Roy, P G Georgopoulosi	6924.1998.tb0 1301.x	an official publication of the Society for Risk Analysis	412	1998 Yes	methodology		- Stochastic Response Surface Methods (SRSMs) - Monte Carlo methods (for comparison) - Latin Hypercube Sampling (for comparison)	analysis	SA - analytical, SA - simulation			paper is related to environmental and biological systems modeling, not drug therapy or vaccine development)			Commercial platform	No	SimuSolv
Surrogate-based A uncertainty and sensitivity F analysis for bacterial invasion in multi-species biofilm modeling.	A Trucchia, M R Mattei, V Luongo, L Funzo, M C Rochoux		Communication s in Nonlinear Science and Numerical Simulation	5	2019 Yes	application	ML	Surrogate modeling (training emulator) Monte Carlo random sampling Sobof indices for global sensitivity analysis Cross-validation error metric Least-Angle Regression gPC-type expansion	Sensitivity analysis	SA - analytical, SA - I simulation	No not app	licable not applicable	not applicable	Not applicable (the paper is focused on biofilm modeling and does not address drug therapy of vaccine development)		Open source, Commercial platform	No	Matlab, OpenTURNS Python package, batman package

T-ALPHA: A Herarchical Kyro, G.W.; Smaldone, A.M.; Shee, Y.; Transformer-Based Deep Xu, C.; Batstis, V.S. Neumal Network for Protein-Ligand Binding Affinity Annual Self-Learning for Protein-Specific Alignment	10.1021/acs.jci - m.4c02332	Journal of - Chemical Information and Modeling	2025 Yes	methodology ML	Monte Carlo dropout, Bayesian inference (approximated through Monte Carlo dropout), smoothed weighting scheme for precision-weighted loss		Bayes - ML	Yes TODO	TODO		d hit identification and lead optimization: predicting protein- ligand binding affinity	No	Open source	Open source	- T-ALPHA - Python - PyTorch (v2.4.1+cu121) - PyTorch Geometric (v2.6.0) - PyTorch Lightning - KeOps - SciPy
Tensor algorithms for advanced sensitivity G.; Pajarola, Renato metrics.	e 10.1137/17M1 - 160252	SIAM/ASA Journal on Uncertainty Quantification	2018 Yes	methodology ML	Surrogate modeling using the tensor train decomposition (TI model, variance-based sensitivity analysis (SA), Sobol tenso train for variance components and sensitivity indices, computation of effective dimension, mean dimension, dimension distribution, and Shapley values.	Sensitivity r analysis	SA - analytical	No not applicab	e not applicable	not applicable	not applicable	Yes	Open source	Open source	ttpy toolbox (Python library)
Testing the obtenence between occupational food, A.M.J. Ragas inhalation and their biological first values with a generalized PBPK- model: The case of 2- proposed and acetone	10.1016/j.yrtph - .2014.05.004	Regulatory 5 toxicology and pharmacology : RTP	2014 Yes	application PBPK	Nested Monte Carlo simulation modified Spearman rank correlation method	Sensitivity analysis	SA - simulation	No not applicab	e not applicable	not applicable	Not applicable (the paper is related to occupational exposure limits and biological limit values, not drug therapy or vaccine development)		Commercial platform	No	Crystal Ball software (Oracle, version 11)
The estimation and transition of the Change Stivis Maria Lavezzi, David transition uncertainties in McDougali applying NOAEL to clinical dose escalation.	10.1111/cts.13 - 831	Clinical and 0 Translational Science	2024 Yes	methodology Others	 - Probabilistic sensitivity analysis - Monte Carlo simulation - Statistical analysis of variability using perent coefficient of variation (VCV%) - Probabilistic modeling using sigmoidal E max function 	Sensitivity analysis	SA - simulation	No not applicab	e not applicable	not applicable	Not applicable	Yes	Open source	No	R version 4.1.1
The Impact of Cytochroms John C Lipscomb, Linda K Teuschler, Je P450 2E1-Dependent Swartout, Doug Popken, Tony Cox, Metabolic Variance on a Risk-Relevant Pharmacokinetic Outcome in Humans	ff 10.1111/j.0272 4332.2003.00 397.x	Risk analysis: - an official publication of the Society for Risk Analysis	2003 Yes	application PBPK	- Monte Carlo simulation - Method of moments to combine distributions - Meture distribution modeling - Goodness of fit testing - Uncertainty propagation through PBPK modeling - Probabilistic sensitivity analysis	Uncertainty propagation, Sensitivity analysis	SA - analytical, UP - prob - basic sim	No not applicab	e not applicable	not applicable	Not applicable (the paper is related to environmental health risk assessment rather than drug therapy or vaccine development)		Commercial platform	No	- SAS 8.0 Analyst routine - StatFit software - SimuSolv software - MATLAB software
The quantification of GEtherington uncertainties in internal doses assessed from monitoring measurements.	10.1093/rpd/nc - I556	Radiation 2 Protection Dosimetry	2007 Yes	methodology PBPK	- Monte-Carlo simulations - novel method	Uncertainty propagation	UP - prob - basic sim	No not applicab	e not applicable	not applicable	not applicable (the paper is related to radiation exposure and internal dosimetry, not drug therapy or vaccine development)	Yes	No	No	MS Visual Basic 6.0, IMBA (Integrated Modules for Bioassay Analysis)
The use of Markov chain Monte Carlo uncertainty analysis to support a Public Health Goal for perchloroethlylene	.2006.06.008	Regulatory - toxicology and pharmacology : RTP	2007 Yes	application PBPK	Bayesian hierarchical analysis Markov chain Monte Carlo (MCMC) analysis probabilistic sensitivity analysis	Bayes, Sensitivity analysis	Bayes - hierachical, SA - simulation	No not applicab	e not applicable	not applicable	not applicable (the paper is related to environmental health and risk assessment, not drug therapy or vaccine development)	Yes	Open source	No	MCSim
To be certain about the Axel Theorell, Samuel Leweke, Wolfgang Wechert, Katharina N6h statistics for 13 C metabolic flux analysis.	379 .ncbi.nlm.nlh.	ed Biotechnology - g and ½ bioengineering	2017 Yes	methodology Others	Fisherian statistics - Profile Likelihoods - Parametric bootstrap	basic frequentist	Freq - likelihood, Freq - resampling	No not applicab	e not applicable	not applicable	not applicable	Yes	Open source	No	13CFLUX2, IPOPT
Transport and dynamics of Andrew Hursthouse, George Kowalczyk toxic politains in the natural environment and their effect on human health: research gaps and challenge.	10.1007/s1065 - 3-008-9213-6	Environmental - geochemistry and health	2009 Yes	review PBPK	Default safety factors for interspecies and intraspecies variability Uncertainty factors Chemical-specific uncertainty factors Physiologically based pharmacokinetic (PBPK) modeling	Uncertainty propagation	UP - prob - basic sim	No not applicab	e not applicable	not applicable	not applicable (the paper is focused on environmental pollutants and their impact on human health, not drug therapy or vaccine development)	No	No	No	Not applicable
Trial Probability of Success Rachid el Galta, Susanne Schmitt, Ramiero Carlestina, Vally PKPD Arani, Ame Ring Smitarity Wth Multiple Endpoints	1		2025 Yes	methodology Others	- Assurance method (expected power approach) - Monte Carlo simulations - Probabilistic sensitivity analysis	Sensitivity analysis	SA - simulation	Yes not applicab	e not applicable	not applicable (design methodology)	The purpose of the model is to demonstrate the similarity between a bloismilar candidate and two versions of the originato drug by establishing a three-way similarity in multiple coprimary endpoints, specifically focusing on pharmacokinetics (PK) and pharmacodynamics (PD) studies.	r	Open source	Upon request to the authors	R Shiny app, R programming language
Uncertain pharmacokinetic Z Liu, Y Yang model based on uncertain differential equation	10.1016/j.amc 2021.126118	Applied - Mathematics and Computation	2021 Yes	methodology Others	Method of moments Confidence intervals Uncertain differential equations Derivation of uncertainty distributions and inverse uncertainty distributions	UDE/SDE		No not applicab	e not applicable	not applicable	not applicable	No	No	No	Not applicable
Uncertainties in doses from G Etherington, A Birchalt, M Puncher, A Intakes of radionucides Mobblanov, E Blanchardon assessed from monotoring measurements.	1152	Radiation - protection dosimetry	2006 Yes	methodology PBPK	Monte Carlo simulations, Bayesian statistical methods	Bayes	Bayes - Other	No not applicab (Therapeutic Thyroid diso: 11 code: CA (Thyroid can SA00.0 (Hyperthyroik	area: ders; ICD 73.0 eer),	paper is about	Not applicable (the paper is related to radiation exposure and dosimetry, not drug therapy or vaccine development)	Yes	No	No	Not mentioned (the paper does not specify the names of any software, packages, or programming languages used)
Uncordanty aggregation Hu. Zhen; Mahadevan, Sankaran; Ao, and eduction in sudulematerial performance prediction.	6-017-1448-6 10.1007/s00- 66-017-1448-	4. Mechanics 6.	2018 Yes	methodology Others	- Surrogate model - Kéging surrogate modeling method - Bayesian network approach for uncertainty quantification and aggregation - Bayesian updating for uncertainty exception - Global sensithity analysis (GSA) for dentifying uncertainty contributions - Monte Carlo simulation (MCS) for forward propagation of uncertainties - Particle filter (PF) method for approximating posterior distributions - Model validation using Bayesian hypothesis testing (BHT) - Integration of Bayesian calibration with model validation	analysis	Bayes - ML, Bayes - calibration, UP - prob - basic sim, SA - analytical, UP - prob - surrogate			not applicable	not applicable	Yes	No	No	
Uncertainty analysis in Zhaomin Dong, Guanxiang Yuan, Jianyis 2,37,8-terolhoroidhenzo-Hu p-Idoxin (TCDD) cancer dose-response for three occupational cohorts.	ng 10.1016/j.envi - nt.2015.12.01 0	Environment 10 International	2016 Yes	application PBPK	Uncertainty propagation probabilistic sensitivity analysis Robustness analysis using noise	Sensitivity analysis, Uncertainty propagation	SA - Other, UP - Other	No not applicab	e not applicable	paper is related to risk assessment an	related to environmental health of risk assessment, not drug therap or vaccine development)	Yes y	Open source	Open source	Not mentioned (the paper does not specify any software, packages, or programming languages used)

Market M	Uncertainty Analysis in Pharmacokinetics and Pharmacodynamics: Application to Naratriptar	Ivelina Gueorguieva, Ivan A Nestorov, Leon Aarons, Malcolm Rowland	10.1007/s1109 - 5-005-6629-x	Pharmaceutical - Research	2005 Yes	application	РВРК	Fuzzy sets theory Global sensitivity analysis Extended Fourier Ampittude Sensitivity Test (FAST) Fuzzy simulations Monte Carlo simulations	Sensitivity analysis, Uncertainty propagation	UP - non prob, SA - Other, SA - analytical	Yes G	G43 (Migraine)	small molecule	clinical trial simulation	The purpose of the pharmacometric model is to predict pain relief in patients following naratriptan administration, in corporating parametric uncertainty and assessing interindividual variabilit to improve model predictiveness.	Yes	Commercial platform	No	- SimLab 1.1 - MATLAB 6 - Stanford Graphics 3.0c
March 19	task of individual	e A Molokanov, V Badjin, G Gasteva, E Antipin	journals.rpd.a0	protection	2003 Yes	methodology	Others			UP - prob - basic sim	No n	not applicable	not applicable	not applicable	related to radiation exposure and internal dose assessment, not drug therapy or vaccine	Yes	No	No	does not specify the software
Second	doses from ingestion of		10.1093/rpd/nc - r032	protection	2012 Yes	application	PBPK	normal distributions for uncertainty quantification - Latin Hypercube sampling algorithm - Monte Carlo calculations for uncertainty propagation - Sensitivity coefficients for	analysis, Uncertainty	SA - simulation, UP - prob - basic sim	No n	not applicable	not applicable	not applicable		Yes		No	Uncertainty Plus, Weighted Likelihood Monte-Carlo
Part	nonideal competitive adsorption-donnan mode effects of dissolved organic matter variability on predicted metal	Comans		Science &	2010 Yes	methodology	Others			UP - prob - basic sim	No n	not applicable	not applicable	not applicable	related to environmental science and not drug therapy or vaccine	Yes	No	No	sampling and statistical analysis of Monte Carlo simulations - ORCHESTRA: for speciation modeling including the NICA-Donnan model - MINTEQ database: for inorganic speciation and
March Control Contro	urinary excretion of	e A Luciani, H Doerfel, E Polig	ioumals.rpd.a0	protection	2003 Yes	application	РВРК	uncertainty propagation - Variance comparison tests and mean comparison tests for uncertainty estimation - Geometric standard deviation (GSD) for representing spread of values - Frequentist statistical tests on logarithmic values	nmnagation	UP - prob - basic sim	No n	not applicable	not applicable	not applicable	related to biokinetics of plutonium, not drug therapy or	Yes	No	No	software or programming languages are mentioned in
State Contact Contac	weighted equivalent lung dose per unit exposure t	Doman, C Huet, X Ortega, A Reineking, G	journals.rpd.a0	protection	2002 Yes	application	Others	Latin hypercube sampling probabilistic sensitivity analysis uncertainty propagation	propagation, Sensitivity	SA - simulation, UP - prob - basic sim	No n	not applicable	not applicable	not applicable	related to radiation exposure and dosimetry, not drug therapy or	Yes		No	RADEP (Radon Dose Evaluation Program)
Applied Company of teaching Company of	analysis of biokinetic models for radiopharmaceuticals use	,		Protection	2010 Yes	methodology	PBPK	Latin hypercube sampling Regression and partial correlation analysis Standardized rank regression coefficient (SRRC) Partial rank correlation coefficient (PRCC)		SA - simulation	Yes n	not applicable	not applicable	not applicable	radiopharmaceuticals in nuclear	Yes	No	No	BIOKINDOS
in the control of the	Analysis of Spatial Predictions of Heavy	ty D. J. Brus, M. J. W. Jansen	10.2134/jeq20 https://pubme 04.0882 ncbi.nlm.nlh.g ov/15224924	d Journal of 1 Environmental 2 Quality	2004 Yes	application	Others	Monte Carlo simulations (implied by the use of simulated values) Latin Hypercube Sampling (LHS) Geostatistical methods (simple indicator kriqing)	analysis, Uncertainty		No n	not applicable	not applicable	not applicable	not applicable	Yes		No	
April Color Microsoft Members of March Mar	in the exposure reconstruction of chemica incidents - the case of	J.G.M. van Rooii, M.A.J. Huilbregts	10.1016/j.toxle - t.2014.07.019		2014 Yes	application	РВРК	Spearman rank correlation coefficients for assessing variability and uncertainty influence Parameter importance analyses for understanding	propagation, Sensitivity		No n	not applicable	not applicable	not applicable	not applicable	Yes	No	No	not mentioned
The SPECTIC Teaser and Cox, Michael Lyndless, Lana Commercy in CTT-12 and the commercy of CTT-12 and Commercy in CTT-12 and CTT-12 a	dynamic contrast-	Jun Yu, Ronnie Wirestam, Adam Johansson, Thomas Asklund, Mikael		resonance in	2013 Yes	methodology	Others	- Monte Carlo simulations		UP - prob - basic sim	Yes C		diagnostic, dynamic contract-enhanced	paper is related to drug therapy development but does not specify the	aid in the development and usage of antianglogenic drugs by providing imaging biomarkers.		Commercial platform	No	Matlab 2010b
In the Herry problem and The Materian Posses and Posses and Computational members of the Cardy (McC) sampling or propagation in monthly of the Cardy (McC) ampling or propagation of the monthly of the Cardy (McC) ampling or propagation of th	for SPECT/CT-based ren dosimetry in (177)Lu peptide receptor	al Cox, Michael Liungberg, Lena	9155/60/21/83	medicine and	2015 Yes	application	РВРК	- uncertainty propagation	basic frequentist	Freq - resampling	ti 2 († ti b	tumors; ICD-11 code: 2C12.0 (Neuroendocrine tumour of uncertain behaviour of	radionuclide therapy	y paper does not explicitly mention the stage of drug development, but it	focused on dosimetry and uncertainty analysis in radionuclide therapy, not drug	Yes	No	No	SIMIND MC program
Duing Newforks for Vang, Regins Bazallay, Connor W. Coley Modecular Property Prediction	in the Henry problem using the multilevel Monte Carl method.	ng Raul Tempone, Ekaterina Vasilyeva, o Gabriel Wittum	024.112854	Computational Physics		_		Monte Carlo (MC) sampling Surrogate-based methods (generalized polynomial chaos approximation and stochastic Galerkin)	propagation	surrogate					related to hydrogeological modeling and not to drug therapy or vaccine development)	,			toolbox - MPI for parallelization
sensibility analysis in pharmacouling pharmacouling pharmacouling pharmacouling pharmacouning pharma	Using Neural Networks fo Molecular Property Prediction	r Yang, Regina Barzilay, Connor W. Coley	m.0c00502	Chemical Information and Modeling	2020 Yes			Bootstrapping, Snapshot Ensembling, Monte Carlo Dropout Ensembling - Mean-Variance Estimation (MVE) - Distance-based methods: Tainmiced distance - Union-based methods: Calsussian Process (GP), Random Forest (RP) - Fingerprint-based methods: Gaussian Process (GP), Random Forest (RP)	frequentist	resampling	p d d p a	paper is related to drug discovery but does not specify a particular therapeutic	not applicable	not applicable	related to drug discovery, not drug therapy development or	Yes	Open source	Open source	SparseGPRegression, skleam's
PBPHCPP model to analysis, basic related to human health risk casessments of the mind and analysis, basic related to human health risk casessments of the mind and passible to the model of	sensitivity analysis in physiological	nd D Krewski	nchi nlm nih o	1 hionhamaceuti	1995 Yes	methodology	PBPK	Monte Carlo methods, Bootstrap procedure	basic frequentist	Freq - resampling	No n	not applicable	not applicable	not specified		Yes	No	No	
Differential Equations for Steen Hwass Ingwersen 8-005-2105-9 pharmacockineti (normality) for pasameter estimation and marginal I-tests for paper is about model structure for PK/PD modeling Commercial (version 6.1) Cere	PBPK/PD model to calculate Data Derived Extrapolation Factors for chlorpyrifos.	Bartels, Jordan N Smith, Robin Mcdougal, Daland R Juberg, Paul S Price	.2017.02.014 .ncbi.nlm.nlh.c ov/28238854.	toxicology and pharmacology : RTP	2017 Yes	ирримини		bootstrap technique - Probabilistic sensitivity analysis	analysis, basic					not applicable	related to human health risk assessments for chemical exposure, not drug therapy or vaccine development)		Open source		Parameters for PBPK Modeling software
	Differential Equations for PK/PD Model	Niels Rode Kristensen, Henrik Madsen, Steen Hvass Ingwersen	10.1007/s1092 - 8-005-2105-9	pharmacokineti cs and pharmacodyna	2005 Yes	methodology	PBPK	(normality) for parameter estimation and marginal t-tests for significance testing	basic frequentist		p	paper is about model development for drug	not applicable	not applicable	identification of appropriate mode structure for PK/PD modeling	el Yes	Commercial	No	- <u>CTSM</u> (version 2.3) - S-PLUS (version 6.1)

Valdation of Bayesian modeling approach of 2Dou, Sergey Y Tolmachev uncertainty in organ doses using post-monter measurements.	10.1038/s4159 - 8-025-04799-3	Scientific - reports	2025 Yes	application PBPK	Bayesian statistical approach Latin hypercube sampling eenstivity analysis	Bayes	Bayes - Other N	o not applicable	not applicable	not applicable	not applicable (the paper is related to radiation exposure and dose estimation, not drug therapy or vaccine development)	Cor	en source, nmercial form	No	USTUR-IRAD (in-house code for radiation dosimetry) - Python 3.9 (programming language) IMBA Professional Plus internal dosimetry software (for validation)
Variability and epistemic uncertainty in water registron takes and page some take association between perfluorocataneate and preedampsis in the C8 Health Project population.	10.1016/j.envr - es.2016.01.01 1	Environmental Research	4 2016 Yes	application PBPK	Monte Carlo simulation probabilistic sensitivity analysis	Sensitivity analysis	SA - simulation N	o not applicable	not applicable	not applicable	Not applicable	Cor	en source, nmercial form	No	MATLAB, R
Variability and uncertainty. Chuanpu Hu nateywelstoria and usage of pharmacometric simulations and intervals	10.1007/s1092 - 8-022-09817-9	Journal of - pharmacokineti cs and pharmacodyna mics	2022	methodology Others	- Variance-covariance natifix of parameter estimates - Bootstap methods - Monte Carlo simulations - Interval analysis (e.g., confidence intervals)	basic frequentist	Freq - Other, Freq - N resampling	o not applicable (the paper is related to drug therapy development but d not specify a partic therapeutic area or ICD 11 code)	oes ular	not applicable	not applicable	No No		No	Not applicable
Use of Probabilistic Expert Judgment in Oncertainty Selken, Andrew E Smith, Ciriaco Valdez- Analysis of Carcinogeni Potency Jack Siemlaycki, Michael A Pereira, Byron Butterworth, Richael Hest, Lorenz Rhomberg, U S Environmental, Dale Hattis, Thomas S Starr		Regulatory 1: toxicology and pharmacology : RTP	3 1994 <mark>Yes</mark>	application Others	Bayesian methods, bootstrap estimates of parameter uncertainty	Bayes, basic frequentist	Bayes - Other, Freq - N resampling	o not applicable	not applicable	not applicable	Not applicable (the paper is related to carcinogenic risk assessment, not drug therapy or vaccine development)	No No		No	Not mentioned (the paper does not specify any software, packages, or programming languages used in the study)
Surrogar based sequential Physic Bandita, Panagotis Tallifa, Minish Bayesian experimental wavigeonkar, Ilias Billonis, Ilitesh Panchal design using non-stationary Gaussian Processes	м		9 2021 <mark>Yes</mark>	methodology Others	Bayesian hierarchical model	Bayes	Bayes - hierachical N	o not applicable	not applicable	not applicable	not applicable	No Opi	en source	Open source	- AdaptiveSDOE (open-source package) - Python (programming language) - Finite element simulator (software used for simulation)
The Vin Yang of CPSA4: a Madia Quignot, Wittold Wiecek, Billy Amad Specian meta-nahighs to quantify (inhibition and induction of CPSA4 metabolism in humans and refine uncertainty factors for mixture risk assessment			2018 Yes	application Others	Bayesian hierarchical meta-regression, Bayesian calibration probabilistic uncertainty factors	Bayes	Bayes - hierachical, Y Bayes - calibration	es not applicable (the paper is related to d therapy developme but does not specif, particular therapeu area or disease)	rug nt va	not specified (guess preclinical or early clinical stage)	: The purpose of the model is to integrate human variability in metabolism and toxicokinetics interactions to derive uncertainty factors for chemical risk assessment, which is relevant to drug therapy development.	No Ope	en source	No	- Markov Chain Monte Carlo software Stan - R (version 3.3) - R packages: tidyverse, broom, ggplot2
Uncertainty analysis in "Madlmin Spiedmann, Wei Bot Li, Maria Zank internal donce Coulations I and Camillo, Ocampo Ramos, Nina Petous for cerum considering the Hensi uncertainties of biolismet Le parameters and 5 values	tl, si-	Radiation and Environmental Biophysics	1 2020 <mark>Yes</mark>	application Others	Uncertainty propagation, Latin hypercube sampling, frequentist methods (confidence intervals)	basic frequentist, Uncertainty propagation	UP - prob - basic sim N	o not applicable	not applicable	paper is related to radiation dosimetr	Not applicable (the paper is related to radiation dosimetry and risk y analysis, not drug therapy or it vaccine development)	No No		No	- In house software package (for calculating S values) - EGSnrc (Monte Carlo radiation transport code) - Un Dose (computer code written in CIII)
Uncertainty quantification Dingding Yan, Mengqi He, Sanyi Tang for the random light of the control of the cont		Journal of Theoretical Biology	0 2024 <mark>Yes</mark>	application Others	-Adaptive generalized polynomial chaos (gPC) -Monte Carlo (MC) sampling -Global sensitivity analysis using the Sobol Index	Sensitivity analysis	SA - analytical, SA - Y simulation	es HIV infection; 820-4	324 not applicable	paper is related to	The purpose of the model is to study the uncertainty quantification in HIV drug therapy, particularly how drug adherence affects treatment efficacy, and to design individual-based optimal antiretroviral strategies.	Yes No		No	Not mentioned (the paper does not specify the names of any software, packages, or programming languages used in the study)
Uncertainty quantification Phillipp Reiser, Javier Enrique Aguillar, and propagation in Ameli Guthke, Paul-Christian Burkner, B surrogate-based Bayeslam Phillipp Reiser		Statistics and computing	3 2025 Yes	methodology Others	-Bayesian approach to surrogate modeling - Uncertainty propagation methods: - Point Estimate - Expected-Posterior (E-Post) - Expected-Hostimood (E-Lis) - Expected-Light Lishinood (E-Lis) - Simulation-based Calibration (SBC)	Bayes, basic frequentist	Bayes - Other, Freq - N likelihood	io not applicable	not applicable	not applicable	not applicable (the paper is not related to drug therapy or vaccine development)	Yes Opi	en source	Open source	Stan
Uscertainty Quantification . James MSatter, Baniel B Williamson, John for Computer Mondel With . Scinocca, Viatchedav Kharin Spatial Cutput Using Calibration-Optimal Bases		Journal of the American Statistical Association	0 2018 Yes	methodology Others	- Bayesian calibration - History matching with iterative refocusing - Model discrepancy analysis - Surrogate modeling (through the use of emulators) - Optimal rotation algorithm for basis vectors		Bayes - calibration, N SA - analytical	io not applicable	not applicable	not applicable	Not applicable (the paper is about climate model tuning and not related to drug therapy or vaccine development)	No Opi	n source	Open source	R programming language

Robust PBPK/PD-Based Model Predictive Control o Blood Glucose	Stephan Schaller, Jorg Uppert, Lukas I Schaupp, Thomas R Pieber, Andreas Schuppert, Thomas Essing	-	-	IEEE Transactions on Biomedical Engineering	29	2016 Yes	application PBPK	Robustness analysis, parameter estimation, model calibration, simulation-based evaluation	, Other		Yes	Endocrinology; ICD 11 code: 5A10	not applicable	paper is related to the development of a medical device/system for glucose control, not	The purpose of the PBPK/PD mode is to predict blood glucose levels and adjust insulin doses for personalized treatment in type 1 diabetes mellitus patients, which is a form of drug therapy development related to insulin treatment.	i No	Commercial platform	Commercial platform with given parameters	- PK-Sim 5.1 - MoBi 3.1 - MoBi Toolbox for MATLAB - MATLAB (including MATLAB GUIDE and optimization toolbox functions fmincon and fminbnd)
Uncertainty quantified discovery of chemical reaction systems via Bayesian scientific machine learning	Emily Nieves, Raj Dandekar, Chris Rackauckas, Pasquale Palumbo	-	-	bioRxiv	6	2024 Yes	methodology ML	Bayesian inference analysis, Preconditioned Stochastic Gradient Langevin Descent (pSGLD) Bayesian framework,	Bayes	Bayes - Other	Yes	not applicable	not applicable	not applicable	the paper is related to QSP	Yes	Open source	Open source	- Julia programming language - Flux.jl (for LSTM modules) - GitHub (for data hosting)
EXPOSURE! EXPOSURE! SESSION UNCERTAINTY ANALYSIS OF THE ESTIMATED INGESTION RATES USED TO DERIVE THE METHYLMERCURY REFERENCE DOSE	Jeff Swartout, Glenn Rice	-	-	Drug and chemical toxicology (New York, N.Y. 1978)	35	2000 Yes	application Others	Monte Carlo analysis, probabilistic sensitivity analysis	Sensitivity analysis	SA - simulation	No	not applicable	not applicable	not applicable	not applicable	No	Commercial platform	Upon request to the authors	- S-PLUS (version 3.2) - Crystal Ball (version 3.2) - Excel (version 5.0)
When is a Model Good Enough? Deriving the Expected Value of Model Improvement via Specifyin Internal Model Discrepancies *	Mark Strong, Jeremy E Oakley	-	-	SIAM//ASA J. Uncertain. Quantification	58	2014 Yes	methodology Others	- Bayesian framework for structural uncertainty quantification - Internal discrepancy analysis - Probabilistic sensitivity analysis - Uncertainty propagation	Bayes, Sensitivity analysis	Bayes - Other, SA - analytical	Yes	HIV/AIDS, B20-B24	small molecule	post-marketing or	The purpose of the model is to predict costs and health outcome (in life years) under two decision options, zidovudine monotherapy versus zidovudine plus lamivudine combination therapy, in people with HIV.		No	No	R
Relative robustness of NOE6 and ECx against large uncertainties in data	Yoshinari Tanaka, Kensel Nakamura, Hiroyuki Yokomizo		-	PLoS ONE	15	2018 Yes	methodology Others	Uncertainty factors Information-gap method Bootstrapping Jackkrife resampling	basic frequentist	Freq - resampling	No	not applicable	not applicable	not applicable	Not applicable (the paper is related to environmental safety and chemical regulation, not drug therapy or vaccine development)	d Yes	Open source	No	R, nis2 package
Uncertainty Quantification in Internal Dose Calculations for Seven Selected Radiopharmaceuticals	Vladimir Spielmann, Wei Bo Li, Maria Zanki, Uwe Oeh, Christoph Hoeschen	-		Journal of Nuclear Medicine	12	2015 Yes	application PBPK	Uncertainty propagation, Latin hypercube sampling	Uncertainty propagation	UP - prob - basic sim	Yes	not applicable	not applicable	paper is about uncertainty analysis	related to radiopharmaceuticals and nuclear medicine, not drug therapy or vaccine development)	No	No	No	DoseU (written in C#)
Validation of Bayesian Analysis of Compartmental Kinetic Models in Medical Imaging	Arkadiusz Sitek, Quanzheng Li, Georges El Fakhri, Nathaniel M Alpert	3 -	-	Physica medica (Testo stampato)	5	2017 Yes	methodology PBPK	Bayesian analysis, Markov Chain Monte Carlo (MCMC) methods	Bayes	Bayes - Other	No	not applicable (the paper is related to diagnostic imaging using FDG, not drug therapy development)	not applicable	not applicable	not applicable	Yes	No	No	Not mentioned (the paper does not specify any software, packages, or programming languages used in the study)
Using the Stochastic Collocation Method for the Uncertainty Quantification of Drug Concentration Due to Depot Shape Variability	J Samuel Preston, Tolga Tasdizen, Chris M Terry, Alfred K Cheung, Robert M Kirb	sti - Y		IEEE Transactions on Biomedical Engineering	12	2009 Yes	methodology Others	combination of component shape parameterization with the stochastic collocation method ("sampling" extension to generalized polynomial chaos)	Other		Yes	Vascular diseases; ICD 11 code: BA00- BA9Z	small molecule	preclinical (guess)	The purpose of the model is to study the effect of depot shape on drug concentration and delivery, which is part of analyzing the efficacy of a drug delivery method for limiting neointimal hyperplasia growth in hemodialysis patients.		No	No	not mentioned
Quantifying Uncertainty in Predictions of Hepatic Clearance	James A Rogers, Jayson Wilbur, Susan Cole, Paul W Bernhardt, Jaye Lynn Bup, Morgan J Lennon, Nathan Langholz, Christopher Paul Steiner	- p,			1	2011 Yes	methodology Others	Bayesian modeling, Bayesian credible intervals, posterior predictive checks, Deviance information criterion (DIC) values	Bayes	Bayes - Other	Yes	not applicable (the paper is related to drug therapy development but does not specify the therapeutic area or ICD 11 code)		Preclinical (guess)	The purpose of the model is to predict human pharmacokinetic parameters for drug therapy development, specifically for determining dosing regimens and assessing uncertainty in preclinical predictions.		No	No	WinBUGS software, version 1.4; R language
Reinforcement learning and Bayesian data assimilation for model- informed precision dosing in oncology	Corinna Maier, Niklas Hartung, Charlott Kloft, Wilhelm Huisinga, Wilhelm Huising				1	2020 Yes	methodology Others	Bayesian data assimilation (DA) using Bayes' formula and particle-based approximation of the posterior distribution	Bayes	Bayes - Other	Yes	Oncology; C34.0	small molecule	paper is related to drug therapy development, but the specific stage is	The purpose of the model is to improve the efficacy and safety od use therapies by controlling neutropenia through model-informed precision dosing (MPD) using Bayesian data assimilation (PA) and reinforcement learning (RL).	f	Open source	Open source	MATLAB
SF-Rx: A Multioutput Deep Neural Network-Based Framework Predicting Drug Drug Interaction under Realistic Conditions for Safe Prescription	Daeun Kim, Jaehong Yu, Sang-Hun Bad Jihyun Lee -	e, -		Journal of Chemical Information and Modeling	0	2025 Yes	methodology ML	- Gini impurity - Expected calibration error (ECE) - Monte Carro dropout	Bayes	Bayes - ML	Yes	not applicable (the paper is related to drug therapy development but does not specify a particula therapeutic area or ICD 11 code)	В	paper is related to drug therapy development, but the specific stage is	The purpose of the SF-Rx model is to predict drug-drug interaction (DDIs) by incorporating pharmacokhetic and pharmacokhetic and pharmacodynamic features, aiming to improve patient safety and facilitate the development of effective combination therapies.	s	Open source	Open source	- LightGBM - PyTorch Lightning - Python-based libraries
Uncertainties on Lung Doses from Inhaled Plutonium	Matthew Puncher, Alan Birchall, Richard Bull	к -	-	Radiation Research	32	2011 Yes	application Others	Bayesian methods, specifically Bayesian posterior probability distributions and the WeLMoS method (an extension of weighted likelihood Monte Carlo Sampling), are used for uncertainty quantification.	Bayes	Bayes - Other	No	not applicable	not applicable	not applicable	not applicable (the paper is related to radiation exposure and lung dose estimation, not drug therapy or vaccine development)	No	No	No	not mentioned

Using machine learning surrogate modeling for faster QSP VP cohort generation	Renée C Myers, Florian Augustin, Jérémy - Huard, Christina M Friedrich		CPT: Pharmacometri cs & Systems Pharmacology	8	2023 Yes	methodology QSP	Surrogate modeling	Uncertainty propagation	UP - prob - surrogate	Yes	Psoriasis; L40.0	not applicable	paper is related to drug therapy development, but the stage is not	The purpose of the model is to derisk the development of novel therapies by creating a wide range of virtual patients to explore variability and uncertainty in clinical responses, and to anticipate outcomes shead of clinical data. This includes identifying potential supportant of the control of the contro	-Yes	Open source	Open source	- SimBiology (MATLAB, 2020) - Regression Learner App 11 - MATLAB scripts
Unorthodox parallelization for Bayesian quantum state estimation	n Hanson H Nguyen, Kody J H Law, Joseph - M Lukens	-	New Journal of Physics	0	2025 Yes	methodology Others	Bayesian inference, Markov chain Monte Carlo (MCMC), preconditioned Crank-Nicholson Metropolis-Hastings algorithm, parallelization of independent MCMC chains, intrachain autocorrelation time diagnostics	Bayes	Bayes - Other	No	not applicable	not applicable	not applicable	Not applicable (the paper is related to quantum state tomography and Bayesian inference, not drug therapy or vaccine development)	Yes	Commercial platform	No	MATLAB, Qiskit Experiments 0.7.0 library
TERRESTRIAL WILDLIFE RISK ASSESSMENT FOR TCDD IN LAND-APPLIED PULP AND PAPER MILL SLUDGE		-	•		1997 Yes	application PBPK	Monte Carlo analysis	Other		No	not applicable	not applicable	not applicable	Not applicable (the paper is related to environmental risk assessment, not drug therapy or vaccine development)	Yes	Commercial platform	No	@RISK as an add-in to Lotus 1-2-3
UNCERTAINTIES IN INTERNAL DOSES CALCULATED FOR MAYAK WORKERS-A STUDY OF 63 CASES	G Miller, R Guilmette, L Bertelli, T Waters, - S A Romanov, Y V Zaytseva	-	Radiation Protection Dosimetry	15	2008 Yes	methodology PBPK	Bayesian methods, discrete empirical Bayes approximation, Poisson-lognormal uncertainty model, Monte Carlo simulations for intra-individual uncertainty	Bayes	Bayes - Other	No	not applicable	not applicable	not applicable	Not applicable (the paper is related to radiation exposure and dose calculation, not drug therapy or vaccine development)	No	Commercial platform	No	Los Alamos UF code