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Notations

Γ(α, β) The gamma distribution with parameters α and β.

Γ−1(α, β) The inverse gamma distribution with parameters α and β.
E(Z) Expectation of the random variable Z.
V(Z) Variance of the random variable Z.
D Available data, made of input-observation pairs (x, y).
B(n, p) The binomial distribution with parameters n and p.
B(p) The Bernoulli distribution with parameter p.
HN (σ) The half normal distribution with scale parameter σ.

N (µ, σ2) The normal distribution with mean µ and variance σ2.
U (a, b) Uniform distribution over [a, b].
π(·) Prior distribution

θ
(true)
i True treatment effect in study i, used to generate data in the simulation.

θS Source study treatment effect.
θT Target study treatment effect
NS Source study sample size
NT Target study sample size
p(Z |W) Probability density function or probability mass function of the random variable Z conditioned

on W.
p(z) Probability density function or probability mass function of the random variable Z evaluated in z.
Pr(A) Probability of event A.
y An observation of random variable Y.

For simplicity, we abuse notation by using Z to denote both random quantities and the arguments of their
probability density functions, unless necessary for clarity, in which case capital letters indicate random
variables, whereas lower case letters indicate the observations from these random variables. Moreover, unless
necessary for understanding, we do not use distinct notations for probability density functions associated
with different random variables.

Acronyms

CPP Conditional Power Prior.

ELIR Expected local-information-ratio.
EMA European Medicines Agency.
ESS Effective Sample Size.

FDA US Food and Drugs Administration.

NPP Normalized Power Prior.

PDCCPP Prior-data conflict calibrated power priors.
PP Power Prior.
PPP Prior-predictive p-value.
PTtP Predictive Test-then-Pool.

TIE Type I Error.

UMP Uniformly Most Powerful.
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1 Introduction

1.1 Context

Though the use of Bayesian approaches has been considered in drug development for decades through
the ICH E9 guideline (CPMP/ICH/363/96), the recent US 21st Century Cures Act highlighted the use of
complex clinical trial designs, such as Bayesian designs (US House of Representatives 2015). This served
as a catalyst for discussions regarding the opportunities and challenges of using external information in
the design and analysis of clinical trials. Regulatory agencies are increasingly willing to consider the use of
methods for borrowing information where appropriate. The European Medicines Agency (EMA) has issued
over the last years a concept paper (EMA/129698/2012), a draft reflection paper on the extrapolation of
efficacy and safety in medicine development (EMA/129698/2012), and a final reflection paper on the use of
extrapolation in the development of medicines in pediatrics (EMA/189724/2018). The latter established
a framework for generating evidence for regulatory assessment of marketing authorization applications
in target populations, particularly in pediatrics. This approach involves the use of existing information
from one or more source populations, such as adults, through quantitative methods such as Bayesian
methods among others. Similarly, the US Food and Drug Administration (FDA) has issued guidance on the
use of Bayesian methods, in particular through the guidance for the use of Bayesian statistics in medical
device clinical trials (US Food and Drug Administration 2010). While the FDA’s guidance documents on
adaptive designs for medical device clinical studies and clinical trials of drugs and biologics (US Food
and Drug Administration 2016; US Food and Drug Administration 2019) are less Bayesian-oriented, they
also do consider (adaptive) Bayesian statistical methodologies. ICH E11 (R1) states that “A fundamental
principle in pediatric drug development requires that children should not be enrolled in a clinical study
unless necessary to achieve an important pediatric public health need.” The ICH published a guideline on
the clinical investigation of medicinal products in the pediatric population (EMA/CPMP/ICH/2711/1999)
which also suggests the incorporation of external information in the design and analysis of clinical trials.
This guideline was followed by a guideline on pediatric extrapolation (EMA/CHMP/ICH/205218/2022)
which provides recommendations, in particular, for the use of Bayesian statistics in trial design and analysis
in the pediatric context. Overall, these guidelines emphasize the need for harmonization of methodologies
for extrapolation in drug development.

It is not clear from published literature what are the underlying operating characteristics of statistical
methods that borrow treatment effects in the design and analysis of clinical trials. More specifically, it
remains unclear how these operating characteristics depend on the setting, in particular, the drift between
source and target study treatment effect, defined as the difference between the true treatment effect in the
target study and the estimate of the treatment effect in the source study (Viele et al. 2018; Lim et al. 2020; Best
et al. 2023). It is also unclear how operating characteristics depend on extrapolation methods’ parameters,
and how these methods compare to each other.

This stems from the fact that these borrowing methods have been proposed over the last two decades, and
therefore no unified framework exists to evaluate and compare them. Moreover, existing simulation studies
tend to limit reporting to the main results, which may result in some lack of clarity over the simulation study
design, or other details (e.g. no details on Monte Carlo uncertainty). This is a general issue noted previously
with simulation studies in statistics (Morris et al. 2019).

This report presents the result of a large-scale simulation study aiming at addressing these caveats.

1.2 Objectives

As explained in the EMA tender technical specifications, the simulation study targeted the following
objectives :

• Perform a large-scale simulation study to better understand the relationship between parameters
for any given model. Underlying simulation parameters that needs to be varied include but are
not limited to: the amount of information that is to be borrowed from the source population; the
sample size of the clinical trial in the target population; the magnitude of the treatment effect; the
link function between observed outcome and statistical model for the treatment effect, as well as the
varying parameters needed to specify the models. Key outputs of interest are:

– the unconditional type 1 error rates, (which are expected to vary depending on the choice of
parameters);

– the statistical power in at least two scenarios: (i) in the event that the true effect in the target
population is the same as the source population i.e. the data can be extrapolated, and (ii) when
the effect in the target population is half as big as the source population ("moderate" effect). In
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this latter case, where the treatment effect in the target population is not the same as the source
population but is non-zero, bias should also be measured. It should be investigated whether
results can be meaningfully summarised in terms of the drift away from the true value of the
prior, conditional on whether a simulation study is feasible;

– plots of parameter choices versus unconditional type 1 error, similar to Figure 9 of Viele et al.
(2014) are important outputs;

– when the amount of borrowing is not fixed but instead model-dependent, the effective sample
size of the final model should also be calculated.

• Finally, provide a comparison between models, in particular, to answer the question as to which
models offer the most power at comparable type 1 error control. A comparison should also be made
against the power of a frequentist approach that uses different measures of unacceptable Type I
Error rate rather than the standard 5%. For example, if a particular Bayesian model under specific
parameterizations has a maximum unconditional type 1 error rate of 12%, then the power of this
model should be compared with the power of a frequentist approach using 12% as the cut-off to
declare efficacy. Using 5% as the cut-off would not allow an assessment as to whether the Bayesian
method had any additional power beyond that gained from simply using a method that increases
the traditional frequentist l type 1 error. Other operating characteristics of the Bayesian approach
have been proposed, for example, the average type 1 error and the maximum type 1 error in a
pre-specified range should also be calculated. The purpose of this final exercise is to ascertain
whether the improved power is simply bought at the expense of type 1 error Control, and if so,
which, if any of the models outperform frequentist approaches with an explicitly greater type 1 error.
The parameters and distributions chosen for the simulation study, specifically for the magnitude of
the adult treatment effect, should reflect the types of data seen in such proposals.

Following the above objectives, key outputs of interest are:
• Type I error rate/Power/MSE/Bias/Precision as a function of drift, defined as the difference

between the true treatment effect in the new study and the estimate of the source treatment effect,
δ = θ(true)

T − θ̂S.

• Type I error rate/Power/MSE/Bias/Precision as a function of the relevant model parameters, in the
congruent (i.e. no or small drift) and non-congruent (i.e. significant drift) scenarios,

• Prior Effective Sample Size (ESS). See Section 8.2 for details.

• For dynamic borrowing priors, the posterior value (or a relevant summary from the posterior
distribution, e.g. the posterior mean/median and 95% credible interval) of the parameter(s) that
governs how much weight is given to the source data as a function of the true treatment effect.

These outputs were analyzed and reported so that they could be used to inform evaluation and assess
specific cases.

2 Simulation settings

The key steps considered in the design of the simulation study are summarized in Figure 1. The simulation
study was designed, coded, and analyzed following good practices detailed in Morris et al. (2019).

To mimic the situation of paediatric extrapolation, where information on the treatment effect in adults
may be used to inform trials in paediatrics, we focus on scenarios where non-concurrent data sources could
be used to inform the design and analysis of a target clinical trial. Importantly, no covariates were included.

2.1 Scenarios considered to study the selected methods

2.1.1 Endpoints and summary measures

We considered four types of endpoints (i.e., the variable collected at an individual level): continuous, binary,
time-to-event, and recurrent event endpoints. These endpoints were the same in the source and target
studies.

For simplicity, and because this is the most standard setting, we always considered that the source and
target data likelihoods belong to the same family of distributions.

Continuous endpoints and associated summary measures were considered normally distributed. For
binary endpoints, we included one case study (Aprepitant case study, see 10.2) in which the summary
measure was the difference in response rate between the two arms, modeled using binomial likelihoods for
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Characteristics of source studies:
- sample size

- endpoint type
- distribution of the
summary statistics
- treatment effect

Scenarios

Identify relevant case studies

Include relevant methods

Identify borrowing parameters
for each method

Set ranges of methods parameters

Base cases and factorial design

MethodsInference and performance

Hypotheses on the
treatment effect

distribution
Design relevant scenarios for the

target study:
- sample sizes

- drift in treatment effect

Inference method
(MCMC/analytic)

Decision criterion

OCs Metrics related to inference

Uncertainty quantification

Figure 1: Steps taken in the design of the simulation study

each arm’s data, and one case in which the summary measure was the log odds ratio, modeled on the log
scale using a normal distribution (Belimumab case study, see 10.2). Similarly, we used normal likelihoods in
the cases of time-to-event and recurrent event endpoints, where the associated summary measures were the
log hazard ratio and the log event rate ratio respectively.

2.1.2 Procedure for the selection of case studies

To ensure the scenario considered in the simulation study are realistic, we relied on existing studies in adults
and paediatrics to inspire the design of the scenarios. In particular, we used historical adults aggregate data
instead of simulated data when building priors for the target study treatment effect.

We searched for studies where the efficacy of treatment was assessed in similar settings in adults and in
paediatrics. We targeted studies that satisfied the following criteria listed in descending order of priority:

• Studies where extrapolation from adults was proposed or submitted to a regulatory health authority.
• Examples where the study in paediatrics did not demonstrate a positive treatment effect, yet a

post-hoc analysis was published using Bayesian borrowing from adults.
• Examples where the study in paediatrics did not demonstrate a positive treatment effect, and at

least one related study exists in adults, which was not used in the analysis of the paediatric data.
• Examples where the study in paediatrics demonstrated a positive treatment effect and at least one

related study exists in adults, which were not used in the analysis of the paediatric data. Even if the
paediatric study was sufficiently powered in this case, we can still investigate the scenario in which
sample sizes would be smaller in the paediatric study in simulations.

To identify such studies, we screened papers included as case studies in the Bayesian borrowing literature,
the paediatrics.eu - EPARs database, as well as Google Scholar and Pubmed using keywords such as "Bayesian
borrowing paediatrics". This resulted in a first selection, which was narrowed down to cover a variety of
endpoints, summary measures, disease areas, and sample sizes. This selection is summarized in Table 1, and
additional context on these case studies is given in Section 10.
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Disease Lower limb
spasticity Type-2 diabetes

Postoperative
nausea and
vomiting

Systemic Lupus
Erythematosus

(SLE)

Multiple
Sclerosis

Severe
Eosinophilic

Asthma

Drug Botox vs placebo
Dapagliflozin vs

placebo (+
Metformin)

Aprepitant vs
ondansetron

Belimumab vs
placebo

Teriflunomide vs
placebo

Mepolizumab vs
placebo

Endpoint Disease severity
score

Glycated
hemoglobin

HbA1c

Absence of
vomiting and
rescue therapy

0-24h after
surgery

SLE Responder
Index

Time to first
relapse

Number of
clinically

significant
exacerbations.

Endpoint type Continuous Continuous Binary Binary Time to event Recurrent event

Summary mea-
sure

Difference in
mean scores

between the two
arms

Difference
between the two
arms in change in
HbA(1c) scores
from baseline to

week 24/26

Difference in
response rates

between the two
arms

Log odds ratio
for active
treatment

compared to
placebo

Log hazard ratio
for active
treatment

compared to
placebo

Log exacerbation
rate ratio for

active treatment
compared to

placebo

Treatment effect
distribution Normal Normal

Integral of the
product of
binomials

Normal
(approximation
for the log OR)

Normal
(approximation
for the log HR)

Normal
(approximation
for the log rate

ratio)

NT : ctrl/trt/tot 130/126/256 76/81/157 52/55/107 39/53/92 57/109/166 NA/NA/25

NS: ctrl/trt/tot 235/233/468 134/133/267 293/280/573 562/563/1125 752/731/1483 NA/NA/551

yT/Data 0.10 (0.10)
1.03 (95% CI,
0.49-1.57) (at

week 26)

Treatment :
48/55, control:

42/52

Treatment : 28
/53 Placebo:

17/39

HR : 0.66 (95%
CI, 0.39-1.11)

Rate ratio : 0.67
(0.17, 2.68)

yS/Data 0.20 (0.10) 0.36 (0.102) (at
week 24)

Treatment :
184/293 Control :

154/280

Treatment:
285/563 Placebo:

218/562

HR : 0.68 (95%
CI, 0.58-0.79)

Rate ratio : 0.50
(0.39, 0.64)

Reference Wang et al. (2022)
Shehadeh et al.
(2023), Bailey
et al. (2010)

Jin et al. (2021),
Salman et al.

(2019),
Diemunsch et al.

(2007)

Best et al. (2023),
Psioda and Xue
(2020), Brunner

et al. (2020),
Brunner et al.

(2021)

Bovis et al. (2022)

Best et al. (2021),
MENSA trial
(Ortega et al.

2014), Keene et al.
(2020)

Table 1: Table summarizing the case studies used to inspire the simulation study design
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Borrowing treatment effects in clinical trials: simulation study report

2.1.3 Sample sizes

For a given case study, the source data sample size NS was kept fixed across scenarios, but the target data
sample size NT varied in a range of values where the maximum is the same as NS (for benchmark purposes,
even if it is unrealistic that a trial in paediatric population will have the same size as the trial in adults),
and the minimum is a much lower value, but still being realistic for a trial in paediatrics. When there is
more than one source trial, we varied NT in a range of values where the maximum is the largest sample size
among the source studies.

As a consequence, we included cases where NT = NS, NT = NS/2, NT = NS/4 and NT = NS/6 with a
minimum of 20 subjects per arm. The corresponding sample sizes for each case study are given in Table 2.

The sample sizes in each arm of the target study were equal. In several cases, we reused methods
implementations, which did not allow to directly take into account different sample sizes in the arms of the

source study. In these cases, we computed an equivalent sample size per arm as nS = 2 n(c)
S n(t)

S

n(c)
S +n(t)

S

.

NT Botox Dapagliflozin Aprepitant Belimumab Teriflunomide Mepolizumab

NS 468 267 573 577 761 551

NS/2 234 133 286 289 381 275

NS/4 117 66 143 144 190 137

NS/6 78 44 95 96 95 91

Table 2: Table summarizing the total sample sizes considered for the target study, in each case study.

2.1.4 Drift in treatment effect

The drift in treatment effect, defined as δ = θ
(true)
T − θ̂S (Viele et al. 2014; Lim et al. 2020; Best et al. 2023), is

the key driver of bias when using extrapolation. We focused in particular on three scenario categories :
1. the true effect in the target population is the same as the observed treatment effect in the source

population ("consistent treatment effect"),
2. the true effect in the target population is half that observed in the source population ("partially

consistent treatment effect"),
3. there is no treatment effect in the target population.

From a regulatory perspective, we are particularly interested in drift values corresponding to target
treatment effect θ

(true)
T ∈ [θ0, θ̂S], that is, a drift in [θ0− θ̂S, 0]. This ’critical’ interval should always be covered

when exploring how OCs vary with drift. However, with an adaptive borrowing method, the probability
of meeting the decision criterion, Pr(Study success|DT = dT , DS = dS), is expected to reach a maximum
at some drift value beyond which source data start being discarded. For the study of adaptive borrowing
methods, it is thus important to select a range of drift wide enough for this discarding phenomenon to be
observed.

To determine the range of drift to consider for a given case study, we propose the following rationale
when the treatment effect follows a normal distribution: one may consider that if the overlap between the
posterior distribution of the treatment effect in the source study p(θS|yS) and the target study p(θT |yT) is
very small, the source study should be discarded. To include this idea in our simulation framework, we
analytically determine, for a given value of θT , the Hellinger distance between N

(
θ̂S, σ2

θS

)
, where σθS is the

standard error on θS, and N
(

θ̂S + δ, σ2
θT

)
, where σθT is the standard error on θT derived from the observed

target study data alone. The Hellinger distance H( f , g) between two probability distributions f and g is
defined as :

H2( f , g) =
1
2

∫
(
√

f (x)−
√

g(x))2dx = 1−
∫ √

f (x)g(x)dx

We determine the value of the negative drift for which the Hellinger distance reaches 0.9, and use this as
the lower boundary of the drift ranges considered. Beyond such an extreme value for the observed drift,
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borrowing from source data can be considered futile. Note that, for simplicity, we used the same drift range
for all scenarios in a given case study, irrespective of later changes introduced in the denominator of source
ratio-like summary measures or target study sampling standard deviation.

Note that in case where the posterior predictive p(yT |θT , σ2
θT
) is very wide, it may not be guaranteed

that the range [θ0 − θ̂S, 0] is included within the drift range obtained with the above method (noted R).
Although this case may happen in very rare cases given the quite conservative threshold of 0.9 considered,
we used the range R ∪ [θ0 − θ̂S, 0] for the drift in practice. We observed that [θ0 − θ̂S, 0] ⊂ R in all case
studies considered.

When we model the distribution of the treatment effect using a difference of rates, the likelihood is :
p(DT |p

(c)
T , p(t)T ) = B(n(c)

T |N
(c)
T , p(c)T )B(n(t)

T |N
(t)
T , p(t)T ) where :

• na
T : number of responders in arm a (c : control, t : target) of the target trial.

• Na
T : number of subjects in arm a of the target trial.

• p(c)T : response rate in arm a of the target trial.

The likelihood is therefore a product of binomials, and the treatment effect θT = p(t)T − p(c)T spans the range

[−1, 1], therefore the drift spans the interval [−1− θ̂S, 1− θ̂S]. Moreover, we need to ensure that p(t)T and p(c)T

are within [0, 1]. Since we assume p(c)T = p̂(c)S , we have:

p(t)T = θT + p(c)T

= δ + θ̂S + p̂(c)S = δ + p̂(t)S

(1)

This implies the following constraint: − p̂(t)S ≤ δ ≤ 1− p̂(t)S . By combining these two constraints, the drift

interval is R = [max(−1− θ̂S,− p̂(t)S ), min(1− θ̂S, 1− p̂(t)S )].
The corresponding drift ranges considered for each case study are listed in Table 3. We considered

evenly spaced values in the range of drift. Note that, for computational cost reasons, we did not use the
same number of drift values for each method and each case study. We used between 23 and 33 drift values
in total. Note that a fine enough resolution is important for the later computation of Bayesian operating
characteristics (see Section 7).

Case study Drift range Drift with θ
(true)
T = θ0 Treatment effect range

Belimumab [-1.02,1.02] -0.48 [-0.541,1.5]
Botox [-0.365,0.365] -0.2 [-0.165,0.565]
Dapagliflozin [-0.707,0.707] -0.36 [-0.347,1.07]
Mepolizumab [-1.53,1.53] 0.693 [-2.23,0.839]
Aprepitant [-0.657,0.343] -0.132 [-0.526,0.474]
Teriflunomide [-0.588,0.588] 0.411 [-0.999,0.177]

Table 3: Drift ranges considered for each case study.

2.1.5 Changes in the denominator of source ratio summary measures

We intended to determine if changes in the denominator value of a ratio-like summary measure (i.e. RR, OR,
HR) have an impact on the operating characteristics. To do so, two additional values are considered for the
denominator of the source study summary measures: 1/2 and 3/2 of the original study value, while keeping
the value of the treatment effect in the source study constant. Such change implies a change in the standard
error on the treatment effect in the source study.

2.1.6 Data generation and sampling approximations

The target study data were generated as follows :
1. For ratio-like summary measures, we computed the standard error on the source study treatment

effect (which, because of the potential change of denominator, will differ from the original value in
the source study).
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2. For ratio-like summary measures, set the value of the control arm response rate in the target study
equal to the control arm in the source study (we assume that differences between the source and
target study treatment effects come from the treatment arms).

3. Set the value of the treatment effect in the target study, depending on the drift, and compute the
corresponding value for the target treatment arm response rate.

4. Compute the corresponding standard error on the treatment effect estimate in the target study.
5. Sample aggregate target study data.

When generating aggregate data for simulated trials, two alternatives can be considered: a first ap-
proach is to generate aggregate data following the true data-generating mechanism. Another approach,
computationally more efficient in some cases, is to generate the summary aggregate data by assuming a
sampling mechanism that matches the likelihood used at the analysis stage (later referred to as "approximate
sampling"). Below, we detail the approaches used for sampling aggregate data for each case study.

2.1.7 Data generation for continuous endpoints

For continuous endpoints, we simply sampled patient-level data from N
(
θ̂S + δ, σ2

T
)
. The corresponding

summary measures (estimate of the mean and standard error on the mean) were then computed. The target
data sampling variance σ2

T was set as a scenario parameter. Note that this is not the variance used at the
analysis stage. At the analysis stage, we assumed that the target data variance is known, and equal to the
empirical variance in the target data sample, σ̂2

T .

2.1.8 Data generation for binary endpoints

We assumed that the response rates are the same in the source and target studies control arms. So, for drift δ,
the response rate in the target study treatment arm is: p(t)T = eδ

eδ+1/oddsS
, where oddsS is the observed odds

in the source study.
• True data-generating process: To generate summary measures that are log odds ratio, we sampled

n(c)
T ∼ B(n

(c)
T |N

(c)
T , p(c)T ) and n(t)

T ∼ B(n
(t)
T |N

(t)
T , p(t)T ), where :

– na
T : number of responders in arm a (c : control, t : target) of the target trial.

– Na
T : number of subjects in arm a of the target trial.

– p(c)T : response rate in arm a of the target trial.

Then, we computed the corresponding estimated rates : p̂a
T =

na
T

Na
T

, and finally, the summary measure

of the treatment effect: θ̂T = log
(

p̂(t)T /(1− p̂(t)T )

p̂(c)T /(1− p̂(c)T )

)
. Additionally, we estimated the standard error on

the treatment effect as: σ̂θT =
√

1
n(c)

T

+ 1
N(c)

T −n(c)
T

+ 1
n(t)

T

+ 1
N(t)

T −n(c)
T

.

• In practice, we did not use approximate sampling in this case. How-
ever, the code allows sampling normally distributed patient-level data from

N
(

θ̂S + δ, 1
p(c)T N(c)

T

+ 1
(1−p(c)T )N(c)

T

+ 1
p(t)T N(t)

T

+ 1
(1−p(t)T )N(t)

T

)
, and compute the corresponding ag-

gregate summary measures.

2.1.9 Data generation for time-to-event endpoints

When the endpoint is a time-to-first event, the rates in the control arm and treatment arm of the target study
are λ

(c)
T and λ

(t)
T respectively. We assume λ

(c)
T = λ

(c)
S , so that λ

(t)
T = eδλ

(t)
S .

• True data-generating process: We will assume that event times follow a Poisson distribution. There-
fore, we sample times-to-first event from an exponential distribution, with arm-specific rates λ

(c)
T

and λ
(t)
T . Due to maximum follow-up time, we additionally apply right-censorship. We then perform

a survival analysis using an exponential regression model to estimate the rates in each arm. The
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treatment effect is defined as θ̂T = log(λ̂(t)
T /λ̂

(c)
T ), where the λs are rate parameters of an exponential

distribution. The standard error on the log rate ratio is approximately
√

1
n(t)

T

+ 1
n(c)

T

, where na
T is the

number of events observed in arm a.

• Sampling from a Gaussian: To limit computational time, we used approximate sampling in this
case. To do so, we first sample a number of events in each arm a, n(a)

T , from P(λ(a)
T ∆tN(a)

T ),
where ∆t is the maximum follow-up time. We then sample summary measures of the treat-

ment effect from N
(

log(λ(t)
T /λ

(c)
T ),

√
1

n(t)
T

+ 1
n(c)

T

)
. Note that we do not sample directly from

N
(

log(λ(t)
T /λ

(c)
T ),

√
(λ

(c)
T ∆tN(c)

T )−1 + (λ
(t)
T ∆tN(t)

T )−1
)

as we observed that this does not provide

an accurate approximation to the true data-generating process. However, when comparing the
power of a frequentist t-test for comparison with Bayesian methods, we assume that the standard

error on the log rates ratio is
√
(λ

(c)
T ∆tN(c)

T )−1 + (λ
(t)
T ∆tN(t)

T )−1 in this case.

The Teriflunomide case study (time-to-event endpoints) is the only case study for which we used approximate
sampling in order to gain computational speed.

2.1.10 Data generation for recurrent event endpoints

• True data-generating process: The original study used a negative binomial regression, so we do the
same by sampling IPD from a negative binomial distribution, and then estimating the parameters of
this distribution from the data.
The negative binomial distribution can be parameterized using its mean µ and the dispersion
parameter k. The mean µ is the expected number of failures before achieving k successes. For this
parameterization, the mean µ and variance σ2 are related as follows: µ = k(1−p)

p , σ2 = k(1−p)
p2 , where

p is a success probability.

From the mean equation, we get p = k
k+µ , and substituting p back into the variance equation:

σ =
√

µ + µ2

k . Assuming a normal distribution for the mean, the standard error of the mean is
therefore :

SE =
σ√
n
=

√
k(1− p)

np2

Therefore, using the delta method, the standard error of the log event rate ratio is approximated as:

SE
(

log
(

λt

λc

))
≈

√(
SE(λt)

λt

)2

+

(
SE(λc)

λc

)2

So that :

SE
(

log
(

λt

λc

))
≈

√√√√√ 1
nt
·


√

µt +
µ2

t
k

µt

2

+
1
nc
·


√

µc +
µ2

c
k

µc

2

• Approximate sampling: Again, in practice, we did not use approximate sampling in this case.
However, the code allows sampling directly from :

N

log
(

λt

λc

)
,

√√√√√ 1
nt
·


√

µt +
µ2

t
k

µt

2

+
1
nc
·


√

µc +
µ2

c
k

µc

2


Note that this approach could, in case of very small sample sizes in the target study, lead to large
variability in the standard error on the log rate ratio.
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2.1.11 Decision criterion

We considered a one-sided null hypothesis θT ≤ θ0 for all case studies except for the Teriflunomide and
the Mepolizumab case studies (see section 10), for which the null hypothesis was θT ≥ θ0. For all scenarios
considered, we chose θ0 = 0 (commonly used to show the superiority of the experimental treatment over the
control treatment).

We denote Θ0 the null hypothesis space. Given observed data dS and dT in the source and target study
respectively, it was concluded that θT /∈ Θ0 if the posterior probability Pr(θT /∈ Θ0|DT = dT , DS = dS) > η,
with η = 0.975. This critical value η is chosen as it is equivalent to requiring the lower limit of the 95%
posterior credible interval calculated with the equal-tail method (i.e. with limits corresponding to the
quantiles 2.5% and 97.5% of the posterior distribution) for the treatment effect to be outside Θ0.

3 Inference in the target trial

3.1 Hypotheses for the outcome distributions

3.1.1 Variance in the target study

Estimating the within-group heterogeneity in the target trial can be challenging given the typically small
sample size in the target population. It would thus be of interest to (partially) borrow the variance from
adults. In particular, at the design stage, it may be possible to assume that the standard deviation of
the outcome distribution is the same as in the source study. To our knowledge, however, the topic of
borrowing outcome variance from a source population has only been considered by (Hobbs et al. 2011),
who introduced the location-scale commensurate prior. In particular, the effect of potential drift between
observed variance in the source population and variance in the target population has not been investigated.
However, investigating this problem would add significant complexity to the study, and slightly depart from
our initial objectives, therefore we leave this topic for future research. As a consequence, when assuming a
Gaussian likelihood when analyzing the data, we assumed that the standard error of the summary measure
in the target population is known, and we set the standard deviation to the sample standard deviation in the
target study, as is often done in meta-analytic approaches and in Bayesian borrowing (Weber et al. 2018; Best
et al. 2021).

However, in practice, variance of the individual outcome may be substantially larger in the target study.
For example, paediatric populations tend to be less homogeneous compared to adults because, for instance,
of change in weight with age, organ maturation, and body composition differences (Kern 2009). Therefore,
we included an additional simulation scenario for the case studies with continuous endpoints (Botox and
Dapagliflozin, see section 10) where the simulated variance in the paediatric data is two times larger than
the variance observed in adults.

3.1.2 Likelihood

For all case studies except the Aprepitant case study, we will assume that the summary measure of the target
study is normally distributed. Therefore, in these cases, p(θ̂T |θT , σ2

θT
) = N (θ̂T | θT , σ2

θT
), where σ2

θT
is the

standard error on the target treatment effect, which, as explained above, is assumed known and estimated
based on the target data sample. Since we assume that the likelihood from both the target and source study
are from the same family, we also have: p(θ̂S|θS, σ2

θS
) = N (θ̂S | θS, σ2

θS
).

In the Aprepitant case study, by contrast, the source data consists of N(c)
S (resp. N(t)

S ) Bernoulli trials

with y(c)S (resp. y(t)S ) successes in the control arm (resp. the treatment arm), that is :

y(c)T | p(c)T ∼ Bin(p(c)T , NT)

y(t)T | p(t)T ∼ Bin(p(t)T , N(t)
T )

(2)

The model structure is described in Figure 2.
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yc
T ∼ B

(
pc

T , NT
)

pc
T ∼ U (0, 1) θT , p(θT |DS)

pt
T = θT + pc

T

yt
T ∼ B

(
pt

T , NT
)

Figure 2: Structure of the model in case where the likelihood is a product of binomials.

The likelihood L(θT |DT) is therefore :

p(DT |θT) =
∫ 1

p(c)T =0

∫ min(1+θT ,1)

p(t)T =max(θT ,0)
p(DT |θT , p(t)T , p(c)T )p(p(t)T , p(c)T |θT)dp(t)T dp(c)T

=
∫ 1

0
p(DT |p

(t)
T = θT + p(c)T , p(c)T )p(p(c)T )dp(c)T

=
∫ 1

0
Bin

(
y(c)T |p

(c)
T , N(c)

T

)
Bin

(
y(t)T |θT + p(c)T , N(t)

T

)
p(p(c)T )dp(c)T

(3)

Here, we do not simply borrow the treatment effect, but the response rates in each arm. Indeed, we
cannot use a binomial likelihood for the data without specifying each rate. However, only the prior on the
treatment effect explicitly incorporates the source study data.

Note also that, although we assumed in the target data generating process that p(c)T = p(c)S , we do not

make this assumption when analyzing the data and put a uniform prior on p(c)T instead.

3.2 Use of source studies data in inference

Where Bayesian methods are applied, they are conditioned on the observed result in the source clinical
trial(s) dS. Indeed this corresponds to the situation of interest for the project where historical data are known
and can be used to inform the analysis of a new trial. Most previous simulation studies in the field used fixed
source datasets sampled from known distributions: either many source datasets (see e.g. Shi et al. (2023),
Pan et al. (2022), Pan et al. (2017), Chu and Yuan (2018), Kaizer et al. (2018), Holzhauer et al. (2018), Brard
et al. (2019), Rosmalen et al. (2018), Jiao et al. (2019), Su et al. (2022), and Gravestock and Held (2019)), or
single datasets (Gravestock et al. 2017; Hupf et al. 2021; Viele et al. 2014; Feißt et al. 2020; Han et al. 2017). By
contrast, in this study, we considered existing datasets as source studies.

When multiple source studies were selected for a given target study, for simplicity, we aggregated their
results by simply pooling them. This is only the case for the Belimumab and Teriflunomide studies, where
adults data come from two studies with identical designs.

3.3 Prior on the source study treatment effect

Even if the source data are kept fixed, several Bayesian borrowing methods need an initial prior π0(θS) (i.e.
prior before extrapolation) to be specified. This is the case, for example, with the family of power priors.

We used “noninformative” or weakly informative initial priors on the treatment effect in both the source
and target populations, in a way that matches the summary statistics. That is:

• for normally distributed treatment effect, when using a normal approximation on the log(OR) or
log(HR), defining a prior is slightly involved. Note that, for two random variables X and Y such that
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X = log(Y), p(Y) = | ∂X
∂Y |p(log(Y)). Accordingly, if p(X) ∝ I(X ∈ [a, b]), then p(Y) ∝ I(log(Y)∈[a,b])

Y .
Therefore, if we put, for example, a Gaussian prior on the treatment effect on the log scale, then
this corresponds to putting a lot of probability mass on small values on the raw scale. However,
it is common in Bayesian analysis to put a wide normal prior on the log scale (see for example
Smith et al. (1995) and Al Amer et al. (2021)), and this has been done also in the context of Bayesian
borrowing (Weber et al. (2018), for example, use N (0, 10), Nikolakopoulos et al. (2018) assumed
a flat prior). An advantage is that this allows for conjugate analysis with a number of borrowing
methods, hence allowing analytical derivation of the posterior. The fact that much more weight
is put, on the natural scale, on small values of the treatment effect compared to large values, can
however be seen as problematic. We conducted some pilot tests to compare results obtained with
either normal or uniform priors, for each case study and without borrowing, to determine a sensible
proper normal prior that does not put too much probability mass on large negative values that, when
backtransformed to the original scale, will lead to very small values. We opted for N (0, 1000), as
larger variance would lead to putting almost no mass on moderate values of the treatment effect on
the raw scale, whereas smaller variance would lead to non-vague priors. Such a prior would lead to
virtually no difference compared to using a flat prior. However, when using the Normalized Power
Prior (Duan et al. 2006), the Empirical Bayes Power Prior (Gravestock et al. 2017), and PDCCPP
Nikolakopoulos et al. (2018), either because we relied on existing implementation or on analytic
derivations, we had to assume flat initial priors.

• for normally distributed treatment effect and normally distributed endpoints, we used, for consis-
tency, a similar vague normal prior on the treatment effect : N (0, 1000).

• when the likelihood was defined on the rates in each arm (in the Aprepitant case study), we used
uniform priors on the control rate, pc ∼ U (−1, 1), and a uniform prior on the treatment effect,
θT |pc ∼ U (−pc, 1− pc).

3.4 Estimation of posterior distribution of model parameters

Markov Chain Monte Carlo In the Bayesian framework, all information about the target treatment effect is
summarized in the posterior distribution p(θT | DS = dS, DT = dT).

In many cases, however, this posterior distribution cannot be computed analytically, but several methods
exist to approximate it. In the simulation study, when possible, we relied on numerical integration to
compute the posterior distribution, or on Markov chain Monte Carlo (MCMC) simulation techniques to draw
approximate samples from the posterior distribution. These samples then allowed us to estimate quantities
of interest, such as the posterior mean, median, and other quantiles.

We used the probabilistic programming language Stan for running MCMC. Given that all parameters in
the models are continuous, we used the default sampler in Stan, the No-U-Turn Sampler (NUTS, Hoffman
and Gelman (2011)), an advanced and highly efficient MCMC sampling algorithm. Unless required because
of convergence issues or strong autocorrelation, we used Stan’s default parameters for NUTS .

Number of chains Using multiple chains with random initial values makes the convergence diagnostic more
accurate (see Section 3.4), and is safer in situations where the posterior distribution is multi-modal. That is,
it mitigates the risk of having the chain circumscribed around a mode, and potentially allows identifying
multimodality. This can lead to a better approximation of the posterior, even if between-chain mixing is not
achieved. As a consequence, we used 4 chains.

Initial values Treatment effect parameters and hyperparameters were initialized by taking samples from
their respective prior (or hyperprior) distributions.

Thinning In the past, it was common to "thin" MCMC simulations, discarding all but every kth sampled
values to reduce autocorrelation while reducing memory burden. However, several renowned MCMC
experts such as Pr Christian Robert or Dr Thomas Wiecki advocated against using thinning - except maybe
in very specific situations. Indeed, in practice, it is still better to keep autocorrelated samples than to remove
them, and samplers such as NUTS tend to have very low auto-correlation. Therefore, we did not use
thinning.

MCMC Effective Sample Size The MCMC effective sample size (MCMC ESS) represents the number of
independent samples from the posterior distribution that provide the same amount of information as the
correlated draws generated by MCMC. In other words, it quantifies the efficiency of the MCMC algorithm
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Method Fixed parameters/Priors Parameters to vary Range of variation

Test-then-pool,
equivalence test None Significance level of the equivalence test η.

Equivalence margin λ.
η ∈ {0.1, 0.5},

λ ∈ {0.1, 0.5, 0.8}
Test-then-pool,
difference test None Significance level of the difference test η η ∈ {0.1, 0.5}

Conditional power
prior (PP) Initial prior on θ Power parameter γ

γ ∈
{0, 0.25, 0.5, 0.75, 1}

Normalized PP Initial prior on θ
γ ∼ Beta(ξγ/ωγ, (1− ξγ)/ωγ). ξγ = 0.5 ωγ

ωγ is varied so that
the standard

deviation of the Beta
prior ranges from 0

to 0.50

Empirical Bayes PP Initial prior on θ None None

p-value based PP Initial prior on θ Shape parameter k k ∈
{0.01, 0.1, 1, 10, 20}

Commensurate PP Initial prior on θS
Prior on the commensurability parameter

τ
See the text

Robust mixture prior Variance of the vague component Mixture weight w.
w in a grid of values
ranging from 0 to 1

in steps of 0.1.

Table 4: Methods and parameters considered in the simulation study. When the method is based on a consistency assumption (θT = θS), we denote
the treatment effect as θ.
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Parameter Heterogeneity prior family Heterogeneity prior

τ2 Inverse Gamma Γ−1(1/3, 1)

τ2 Inverse Gamma Γ−1(1/7, 1)

τ2 Inverse Gamma Γ−1(1/1000, 1)

τ Half Normal HN (1)

τ Half Normal HN (0.5)

log(τ) Cauchy Cauchy(0, 30)

Table 5: Priors on the heterogeneity parameter. Priors taken from Weber et al. (2018) and Hobbs et al. (2011).

in exploring the posterior distribution. An MCMC ESS is estimated for each parameter. Aiming for a
sufficiently large MCMC ESS is crucial for reliable estimation.

Moreover, a crucial quantity estimated from MCMC draws is Pr(θT /∈ Θ0). Indeed, it is concluded that
the treatment is effective if Pr(θT /∈ Θ0) > η, with η = 0.975. Therefore, we need to ensure that we get a
precise estimate of the 0.975th sample quantile.

The reasoning used to determine the standard deviation of sample quantiles is given in appendix A,
allowing us to conclude that if we want the 0.975th sample quantile to be estimated with the same precision
as the median, we would need 1/0.47 = 2.14 times more samples.

Based on these considerations, we ensured that the MCMC effective sample size for the target trial
treatment effect parameter θT is at least 10,000 and adapt the chains’ length consequently. Assuming a
posterior that is a standard normal distribution, this would correspond to a standard error on the median
estimate of 0.0125, and a standard error on the 0.975th sample quantile estimate of 0.0267. Concretely, with
NC = 4 chains of length L, for each simulated data replicate, we computed the MCMC ESS for the target
treatment effect ϵθT . We then adjusted the chain length so that L ← 1.1× L× ϵθT /ϵ, where ϵ is the target
MCMC ESS of 10,000, and repeated the iteration until sufficient MCMC, that is, until ϵθT > ϵ. To avoid an
explosion of chains length, we capped L to 10,000. By contrast, for speed gains, we reduced chain lengths
when ϵθT > 1.1× ϵ, applying L← 1.1× L× ϵθT /ϵ, and proceeded to the next data replicates.

Convergence diagnostics By definition, a Markov chain generates samples from the target distribution only
after it has converged to equilibrium. In theory, convergence is only guaranteed asymptotically, therefore,
in practice, diagnostics must be applied to monitor convergence for the finite number of draws actually
available. Therefore, at the model development stage, when using MCMC, Markov Chains visual inspection
was performed using tools such as trace plots and autocorrelation plots to verify that the MCMC chains have
reached a stationary distribution. To automate the MCMC convergence diagnostic for each replicate, we
used the Gelman and Rubin (1992) potential scale reduction statistic R̂ to monitor convergence. R̂ measures
the ratio of the average variance of samples within each chain to the variance of the pooled samples across
chains. If all chains are at equilibrium, these will be the same and R̂ will be one, and greater otherwise.
Gelman and Rubin’s recommendation is that the independent Markov chains be initialized with diffuse
starting values for the parameters and sampled until all values for R̂ are below 1.1. We also monitored the
number of transitions ending with a divergence.

Execution of the code does not stop in case of issues with MCMC inference; rather, a warning is stored in
the results table so that the pipeline is not interrupted. In case of convergence issues, we adapted the MCMC
algorithm by increasing the acceptance probability of the sampler, the tuning period, and reparameterizing
the distribution. These convergence diagnoses also allowed us to determine if some models have particular
behaviors that need specific handling.

3.5 Sources of uncertainty

It is important, when reporting Bayesian estimates such as the posterior mean, to report the associated
uncertainty. However, this uncertainty originates from two sources that we need to distinguish: on one hand,
the uncertainty in the estimates which is due to the finite number of simulations and, when applicable, the
finite length of Markov chains (which, taken together, constitute the Monte Carlo error); on the other hand,
the posterior uncertainty inherent to any Bayesian estimation method (posterior uncertainty), which is due
to the finite amount of data.
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Therefore, for each operating characteristic estimate, we reported the uncertainty due to the finite number
of simulations through the Monte Carlo Standard Error (MCSE) of Estimate (Morris et al. 2019) or Monte
Carlo Confidence Intervals. For each MC estimate, the corresponding MCSE formula is given in Table 6 of
Morris et al. (2019). In figures plotting the MC estimates, we displayed MC error as 95% confidence intervals.
These confidence intervals were estimated using nonparametric bootstrap for metrics other than coverage
and probability of success, for which we know the true underlying distribution. These confidence intervals
were not estimated by assuming normality as we noticed this could lead to problematic confidence intervals
for metrics such as the mean MSE despite the large number of replicates. The MCSE for the probability of

study success is given by
√

p̂(1− p̂)
nsim

, where p̂ is the estimate of the probability of success. The relative Monte

Carlo standard error (RMCSE) is
√

1− p̂
nsim p̂ . For a number of replicates of 10, 000, and p̂ = 0.025, this gives an

RMCSE of 6.3%, which can be considered reasonable. The MCSE and RMCSE were estimated for each MC
estimate.

4 Adaptation of existing methods to the settings of interest

Normal likelihood When a normal likelihood was assumed, adapting existing methods that were developed
to borrow the control arm only to borrow the treatment effect was straightforward. Indeed, we only had to
define a prior on the treatment effect instead of the control arm summary measure and to use as likelihood
N (θ̂T | θT , σ2

θT
) instead of N ( p̂(t)T | p(t)T , σ2

p(t)T

).

Binomial likelihood Adapting methods that borrow the control arm with a binomial likelihood to borrow
the treatment effect, with the model structure in Figure 2, is far from straightforward. In these cases, as
described in 5, we sometimes did not adapt the method and used a normal likelihood instead.

To adapt methods that were developed to be used with normal likelihoods, we used the model structure
described in 2, but using a truncated normal as the prior distribution p(θT |DS), so as to ensure that the
treatment effect θT remains within valid range.

5 Selected statistical methods

The choice of statistical methods to be considered for the simulation study is based on an extensive literature
review. Several existing methods can be shown to be equivalent in the setting we consider, and others are
improved versions by the same authors. This led us to the selection of models described in this section.
For each method, we varied the parameters that affect the amount of borrowing. These parameters are
summarized in Table 4.

5.1 Separate analysis and pooling

For each borrowing method, a comparison was made against the power of frequentist analyses that use
either full borrowing (pooling) or no borrowing (separate) at the nominal type 1 error rate of 2.5%. Note
that, when using Bayesian methods, the empirical variance is estimated from the sample data. Therefore,
when the likelihood is Gaussian, the corresponding frequentist test is a t-test. For each method of interest,
the power of the t-test was evaluated at different significance levels that depend on the unconditional type 1
error rate of the borrowing method of interest. When the likelihood is given by Figure 2 (Aprepitant case
study), we used a test of difference of proportions based on Cohen’s h.

For comparison of other operating characteristics and inference metrics, we also implemented Bayesian
analyses that pool the data or perform a separate analysis. With vague priors, these are equivalent to the
frequentist analyses.

5.2 Conditional Power Prior

5.2.1 Method description

As a Bayesian baseline, and to investigate the effect of borrowing without adaptation to prior-data conflict,
we started by investigating the effect of fixed borrowing with discounted adults posteriors as priors.

In order to incorporate a fixed amount of information from source studies into the prior for θT , Ibrahim
and Chen (2000) introduced the power prior (also referred to as the conditional power prior (CPP) (Neelon
and O’Malley 2010)):
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π(θT |DS, γ) ∝ L (θT |DS)
γπ0(θT), (4)

where γ ∈ [0, 1], and π0(θT) denotes the so-called "initial" prior distribution for θT . The main feature of the
method is that the impact of source data on the posterior distribution can be controlled by choosing the
value of the power parameter γ, thus providing a simple way of discounting prior information. When γ = 1,
data from the source and target study are pooled, whereas if γ = 0, data from the source study are discarded.
This power parameter allows smoothly changing the analysis from no borrowing to pooling. This method
assumes that the parameter of interest θT is the same in the source and target studies. In the Normal-Normal
model, this is equivalent to inflating the prior variance by a factor 1/γ.

5.2.2 Parameters to be varied

The power parameter γ was taken in the set {0, 0.25, 0.5, 0.75, 1}.

5.2.3 Implementation

For normal likelihood, we used a custom implementation using the analytical posterior. In the Aprepitant
case study, we used a custom implementation that relied on Stan for MCMC inference.

5.3 Frequentist test-then-pool

5.3.1 Method description

The most common frequentist borrowing method is test-then-pool. The idea is to assess the difference
between source and target data before deciding whether to pool the data or not. In this test-then-pool
approach (Viele et al. 2014), the hypothesis H0 : θT = θS is tested, where again, θT and θS denote the variable
of interest (such as the response rate or treatment effect) for the target study and the source study, respectively.
If H0 is rejected, this indicates that the data should not be pooled, and should be analyzed independently. So
the source data are either fully borrowed or not borrowed at all, depending on the test result. Liu (2018)
argues that testing the difference between θS and θT through the p-value may not be the best approach to
evaluate whether one can reasonably pool the data or not. Indeed, the power of the test depends not only
on the difference θS − θT , but also on factors such as the sample sizes. For instance, a small sample size in
the control group may result in a non-significant p-value, which could lead to systematically pooling the
data even if there is a true difference between the source and target data. To address this issue, Liu (2018)
proposed a more conservative approach: testing an equivalence hypothesis instead, with: H0 : |θS − θT | > λ
versus H1 : |θS − θT | < λ, where λ > 0 represents a predetermined equivalence margin. They compute
the p-value as the maximum of the p-values for testing two one-sided hypotheses: H0a : θS − θT > λ and
H0b : θS − θT < −λ (Schuirmann 1987). Under this approach, a significant p-value implies the rejection of
the null hypothesis of non-equivalence. Thus, data was pooled if the p-value was less than a pre-specified
level.

We investigated both of these approaches using t-tests. In our implementation, once the frequentist test
indicated whether to pool the data or not, we used the Bayesian implementation of the separate analysis (or
pooled analysis).

It is not clear, however, how to generalize the Test-then-Pool approach in the case where data are binary
and no Gaussian approximation is used for the likelihood (Aprepitant case study). Indeed, for binary data,
Viele et al. (2014) used a Fisher exact test to compare the control arms. If we were to borrow the two arms, a
sensible approach would be to perform tests (either difference or equivalence tests) on each pair of arms,
and pool if both tests agree that the data are consistent. However, it is not clear which frequentist test to
use when we focus on the treatment effect, as in this case, we want to test for a difference in differences of
proportions. One possible approach would be to compare the likelihood of two models: one in which the
data from both studies come from the same distribution, and another in which they come from different
distributions, and compute the corresponding Bayes Factor. Based on the Bayes Factor value, the data could
then be pooled or analyzed separately. However, setting such a threshold may prove difficult and arbitrary.
Therefore, letting this problem for future work, we decided to proceed as in the Gaussian likelihood case,
and used a t-test. Once the decision to pool or not the data was taken, we performed the analysis assuming
the likelihood in each arm is a binomial.
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5.3.2 Parameters to be varied

Borrowing is determined by the significance level of the equivalence/difference test, and the equivalence
margin. We chose a significance level of 0.10 and 0.50. Liu (2018) suggested an equivalence margin λ = 0.1
in proportions for binary data. We considered an equivalence margin of 0.10, 0.50, or 0.80.

5.3.3 Implementation

The test was performed using the BSDA package. Pooling or separate analysis relied on the implementation
of the pooling and separate analysis. In the normal likelihood case, pooling and separate analysis were
implemented using RBesT to derive the exact posterior distribution. In the Aprepitant case, we used a
custom implementation based on Stan for MCMC inference.

5.4 Normalized Power Prior

5.4.1 Method description

In the power prior approach, the power prior parameter γ can be treated as a random variable subject to
inference by making use of a prior π(γ) in a hierarchical model. This gives rise to the normalized power prior
(NPP, Duan et al. (2006) and Neuenschwander et al. (2009)). This is achieved by introducing a normalizing
constant for π(γ):

C(γ) = 1
/ ∫

L (θT |DS)
γπ0(θT)dθT . (5)

The normalized prior on (θT , γ) is then defined as :

π(θT , γ|DS) = C(γ)L (θT |DS)
γπ0(θT)π(γ). (6)

Analytical derivation for the prior and posterior distribution obtained with a normalized power prior
with a normal likelihood, a Beta prior on the power parameter γ ∼ Be(p, q), and known standard deviation,
can be found in Pawel et al. (2023) or in appendix A of Gravestock et al. (2017). In this setting, the normalized
power prior is:

π (θT , γ | DS) =
L (DS | θT)

γ π(γ)∫ +∞
−∞ L

(
DS | θ′T

)γ dθ′T
= N

(
θT | θ̂S, σ2

θS
/γ
)

Be(γ | p, q)

The marginal prior on θT is :

π (θT | DS) =
∫ 1

0
N
(

θT | θ̂S, σ2
θS

/γ
)

Be(γ | p, q)dγ

=
1

B(p, q)
1√

2πσ2
θS

∫ 1

0

√
γ exp

(
γ

(
θ̂S − θT

)2

−2σ2
θS

)
γp−1(1− γ)q−1dγ

=
1

B(p, q)
1√

2πσ2
θS

Γ(p + 1/2)Γ(q)
Γ(p + q + 1/2)

M

(
1
2
+ p,

1
2
+ p + q,−

(
θ̂S − θT

)2

2σ2
θS

)

∝ M

(
1
2
+ p,

1
2
+ p + q,−

(
θ̂S − θT

)2

2σ2
θS

)
,

(7)

where M(a, b, z) = 1/(Γ(a)Γ(b− a))
∫ 1

0 eztta−1(1− t)b−a−1dt is Kummer’s confluent hypergeometric func-
tion, which is implemented in standard numerical mathematics libraries (note that the term Γ(p + q + 1/2)
in the numerator is omitted in Gravestock et al. (2017)) .
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Combining the joint prior π (θT , γ | DS) with the likelihood of the target study data produces a joint
posterior for θT and γ, that is,

π (θT , γ | DT , DS) =
L(DT | θT)π (θT , γ | DS)∫ 1

0

∫ ∞
−∞ L

(
DT | θ′T

)
π
(
θ′T , γ′ | DS

)
dθ′Tdγ′

=
N
(

θ̂T | θT , σ2
θT

)
N
(

θT | θ̂S, σ2
θS

/γ
)

Be(γ | p, q)∫ 1
0 N

(
θ̂T | θ̂S, σ2

θT
+ σ2

θS
/γ′
)

Be (γ′ | p, q) dγ′
,

(8)

from which a marginal posterior for γ can be obtained by integrating out θT , that is,

π (γ | DT , DS) =
∫ +∞

−∞
π (θT , γ | DT , DS) dθT

=
N
(

θ̂T | θ̂S, σ2
θT

+ σ2
θS

/γ
)

Be(γ | p, q)∫ 1
0 N

(
θ̂T | θ̂S, σ2

θT
+ σ2

θS
/γ′
)

Be (γ′ | p, q) dγ′

∝ N
(

θ̂T | θ̂S, σ2
θT

+ σ2
θS

/γ
)

Be(γ | p, q).

(9)

The posterior distribution of the power parameter can therefore be approximated using numerical
integration.

Gravestock et al. (2017) show that:

π (θT | DT , DS) = C(γ)
∫ 1

0
N
(

θ̂T | θT , σ2
θT

)
N
(

θT | θ̂S, σ2
θS

/γ
)

Be(γ | p, q)dγ

= C(γ)N
(

θ̂T | θT , σ2
θT

) ∫ 1

0
N
(

θT | θ̂S, σ2
θS

/γ
)

Be(γ | p, q)dγ

= C(γ)N
(

θ̂T | θT , σ2
θT

)
π (θT | DS)

∝ exp

(
− (θ̂T − θT)

2

2σ2
θT

)
M

(
1
2
+ p,

1
2
+ p + q,−

(
θ̂S − θT

)2

2σ2
θS

)
.

(10)

Generalizing the Normalized Power Prior to borrow treatment effect in the Aprepitant case study is not
straightforward. Therefore, in this case, we assumed a normal likelihood.

5.4.2 Parameters to be varied

We used a beta prior on the power parameter: γ ∼ Beta(p, q), which is a common choice (Gravestock et al.
2017; Shi et al. 2023). To better interpret this prior, we reparameterize it as γ ∼ Beta(ξγ/ωγ, (1− ξγ)/ωγ),

where E[γ] = ξγ and V[γ] = σ2
γ =

ωγξγ(1−ξγ)
1+ωγ

. We used ξγ = 0.5 , and vary ωγ so that the standard

deviation of the Beta prior ranges from 0 to 0.50. We have: ωγ =
σ2

γ

ξγ(1−ξγ)−σ2
γ

.

5.4.3 Implementation

When implementing this model, we took inspiration from the code in Pawel et al. (2023), which relies on
numerical integration instead of the full analytical expression that includes the confluent hypergeometric
function. We noticed that computing the posterior using the full analytical expression was faster than using
numerical integration. However, when using adaptive quadrature to compute the mean and variance of the
distribution, using numerical integration to obtain the posterior density led to a much faster computation
compared to using the full analytical expression, yet with similar accuracy. Therefore, we instead relied on
numerical integration to compute the posterior distribution.
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5.5 PDCCPP and empirical Bayes PP

5.5.1 Method description

Nikolakopoulos et al. (2018) suggested using a point estimate of the power parameter γ of the power prior
that controls type 1 error. Their approach is based on the Box p-value (also called prior-predictive p-value
(PPP)). The two-sided PPP for a test statistic TT (noted tT when corresponding to observed data) is defined
as :

ppp(dS, γ) = 2 min[Pr(TT ≥ tT |DS = dS, γ), Pr(TT ≤ tT |DS = dS, γ)], (11)
where dT denotes the observed target trial data.

They suggest choosing a fixed value for γ using :

γ = min
[

max
γ∈[0,1]

{γ : ppp(dS, γ) ≤ c}, 1
]

, (12)

where ppp(dS, γ) indicates that the PPP is evaluated conditionally on dS and γ, and c is an arbitrary constant.
They show that, with normal outcomes, for a one-sided hypothesis test based on the posterior probability
of θT with an appropriate choice of c, the PDCCPP controls the type 1 error rate at a pre-specified level.
Nikolakopoulos et al. (2018) call this variant the prior-data conflict calibrated power prior (PDCCPP).

In the Normal-Normal model, TT = θ̂T , and θ̂T |γ ∼ N
(

θS, σ2
S

γNS
+

σ2
T

NT

)
. So the PPP is :

γ =


σ2

S
NS[(

θ̂T−θ̂S
z1−c/2

)2
−

σ2
T

NT

] , if θ̂T < θ̂S + zc∗/2σpr ∨ θ̂T > θ̂S + z1−c∗/2σpr

1, if θ̂S + zc∗/2σpr ≤ θ̂T ≤ θ̂S + z1−c∗/2σpr

(13)

with σpr =

√
σ2

T
NT

+
σ2

S
NS

.

Nikolakopoulos et al. (2018) also introduces a variant of PDCCPP, which is a form of Test-then-Pool based
on the predictive p-value, Predictive Test-then-Pool (PTtP). In PTtP:

γ =

{
0, if θ̂T < θ̂S + zc/2σpr ∨ θ̂T > θ̂S + z1−c/2σpr
1, if θ̂S + zc/2σpr ≤ θ̂T ≤ θ̂S + z1−c/2σpr

, (14)

However, the original publication only includes the code to estimate the calibration parameter c for the
PDCCPP, and given the close resemblance between the two methods, we focused on PDCCPP.

Importantly, with c = 2(1−Φ(1)), the estimator of γ in 12 is equivalent to the maximum likelihood
estimator (empirical Bayes power prior) initially studied by Gravestock et al. (2017). Gravestock et al. (2017)
(supplementary A) derives an analytical posterior for the empirical power prior in the case of a normal
likelihood and a beta prior on γ:

δ̂ =
σ2

θS

max
{(

θ̂T − θ̂S
)2

, σ2
θT

+ σ2
θS

}
− σ2

θT

, (15)

where the max is required to restrict δ̂ ≤ 1. The empirical Bayes posterior distribution,

p
(
θT | θ̂T , θ̂S, δ = δ̂

)
∝

N
(

θT | θ̂T , σ2
θT

)
×N

(
θT | θ̂S,

(
θ̂T − θ̂S

)2 − σ2
θT

)
if
(
θ̂S − θ̂T

)2
> σ2

θT
+ σ2

θS

N
(

θT | θ̂T , σ2
θT

)
×N

(
θT | θ̂S, σ2

θS

)
otherwise.

(16)
We thus included PDCCPP, as well as the empirical Bayes power prior. Note, however, that PDCCPP and

PTtP were only developed in the case of a normal likelihood. Thus, in the Aprepitant case study, for which
other methods assume the model structure in Figure 2, we assumed a normal likelihood to use PDCCPP.

5.5.2 Parameters to be varied

Both the PDCCPP and the empirical Bayes power prior do not include free parameters.
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5.5.3 Implementation

We adapted the code in Nikolakopoulos et al. (2018).

5.6 P-value based power prior

5.6.1 Method description

In a generalization of the test-then-pool approach, Liu (2018) proposed a method for selecting the power
parameter γ in the conditional power prior based on the p-value of an equivalence test between the source
and target data. The equation used to determine γ is as follows:

γ = exp
[

k
1− p

ln(1− p)
]

, (17)

where k is a shape parameter that must be specified. This function was chosen so that more source data is
borrowed when the p-value is close to 0 (i.e., the non-equivalence null hypothesis is strongly rejected). Larger
values of k result in steeper curves (faster decrease from 0 to 1), that is more discounting will be applied
to the source data for a given p-valuez. This method can be viewed as an extension of the test-then-pool
approach, with the power parameter smoothly adjusting the amount of borrowing from no borrowing to
pooling. Again, we used t-tests to compare the source and target studies. For the same reason we assumed a
normal likelihood when performing the test in the Test-then-Pool approaches for the Aprepitant case study,
again, we perform a t-test to compute the p-value, then analyze the data assuming the model structure in
Figure 2.

5.6.2 Parameters to be varied

The shape parameter k determines the amount of borrowing for a given p-value. To understand its impact
and give insights into its interpretation, we varied k along a grid of values between 1 and 20, similarly to Liu
(2018).

5.6.3 Implementation

The test was performed using the BSDA package. We then reused our Conditional Power Prior implemented
by plugging the power parameter value derived from the p-value.

5.7 Commensurate Power Prior

5.7.1 Method description

The commensurate power prior is given by (Hobbs et al. 2011):

π(θT , γ, τ|DS) =
∫

π(θT |θS, τ)
L(θS|DS)

γπ0(θS)∫
L(θS|DS)γπ0(θS)dθS

dθS × p(γ|τ)p(τ) (18)

where π0(θS) is an initial prior for θS. Hobbs et al. (2011) chose the following distributions:

θT |θS, τ ∼ N
(

θS,
1
τ

)
,

and

γ|τ ∼ Beta(g(τ), 1),
where g(τ) is a positive function of τ that is small for τ closed to zero and large for large values of τ.
When the evidence for commensurability is weak, τ is forced toward zero, increasing the variance of the
commensurate prior for θT . So the amount of borrowing can be adapted in two ways: through the power
prior parameter, or through the commensurability parameter.

Below is a detailed derivation of this prior:

π(θT , γ, τ|DS) = π(θT |γ, τ, DS)π(γ, τ|DS)

=
∫

π(θT |γ, τ, θS, DS)π(θS, γ, τ|DS)dθS × π(γ, τ|DS)
(19)
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We note that :
π(γ, τ|DS) = π(γ|DS, τ)π(τ|DS)

= π(γ|τ)π(τ),
(20)

and:
π(θT |γ, τ, θS, DS) = π(θT |τ, θS).

Therefore:

π(θT , γ, τ|DS) =
∫

π(θT |θS, τ)π(θS|γ, DS)dθS × p(γ|τ)p(τ) (21)

The term π(θS|γ, DS) corresponds to a normalized power prior, so that :

π(θT , γ, τ|DS) =
∫

π(θT |θS, τ)
L(θS|DS)

γπ0(θS)∫
L(θS|DS)γπ0(θS)dθS

dθS × p(γ|τ)p(τ) (22)

Note that in equation (4) of Hobbs et al. (2011), the prior π0(θS) is omitted, and dθS is misplaced.
In the Gaussian likelihood case, the "location commensurate power prior" is given by (Hobbs et al. 2011) :

p (θT , γ, τ | DS) ∝N
(

θT | θ̂S,
1
τ
+

σ̂2
S

γNS

)
× Beta (γ | g(τ), 1)× π(τ) ,

where σ̂S is the standard deviation observed in the source study. The posterior is therefore:

p (θT | DS, DT , γ, τ) ∝ N
(

θT

∣∣∣∣∣ γNSτσ2
T θ̂S + NTuθ̂T

γNSτσ2
T + NTu

,
uσ2

γNSτσ2
T + NTu

)
,

where σT is the standard deviation in the target study, which is assumed known, and u = γNS + σ̂2
Sτ.

Moreover:

p
(

γ, τ | DS, DT , σ2
)

∝N
(

θT − θ̂S | 0,
σ2

NT
+

1
τ
+

σ̂2
S

γNS

)
× Beta (γ | g(τ), 1)× π(τ).

5.7.2 Parameters to be varied

Hobbs et al. (2011) considered the case of Gaussian likelihoods. They chose g(log(τ)) = max(log(τ), 1)
and put a flat tails Cauchy(0, 30) prior on log(τ). For the choice of priors on τ, see Table 5. So the study
investigated how the prior on τ influences inference on γ and θT in the various scenarios.

5.7.3 Implementation

We used a custom implementation in Stan. Generalizing the Normalized Power Prior to borrow treatment
effect in the Aprepitant case study is not straightforward. Therefore, in this case, we assumed a normal
likelihood.

5.8 Robust Mixture Prior

5.8.1 Method description

Schmidli et al. (2014), followed by Röver et al. (2019), and based on earlier work by Greenhouse and
Waserman (1995), proposed the use of a mixture prior in order to adapt the amount of borrowing while
making the analysis more robust to prior-data conflict:

π(θT |DS = dS) = wπ(θT |Msource, DS = dS)

+ (1− w)π(θT |Mweak, DS = dS),
(23)

where Msource is a model corresponding to either consistency, subject-level exchangeability, or study-level
exchangeability. The weight w corresponds to Pr(Msource|DS), the prior belief corresponding to this model.
By contrast, Mweak is an alternative model corresponding to unrelated treatment effects in the source and
target studies. Each component in the mixture corresponds to a different assumption about the relationship
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between studies: π(θT |Msource, DS) corresponds to an informative component based on the assumption that
studies are related, whereas π(θT |Mweak, DS) is typically a vague component. The posterior distribution
from the source study was used as the informative component π(θT |Msource, DS).

The posterior distribution of the target study treatment effect θT is a weighted average of the posterior
distributions under each model, weighted by their respective posterior model probabilities:

π(θT | DT = dT , DS = dS) = w̃π (θT | Msource , DT = dT , DS = dS)

+ (1− w̃)π (θT | Mweak , DT = dT , DS = dS) ,
(24)

where the updated weight w̃ corresponds to the posterior Pr (Msource | DT = dT , DS = dS).
So the mixture introduces robustness by allowing the vague prior to dominate if the heterogeneity

between source and target trials is large compared to within-trial variance.
As recommended by Schmidli et al. (2014), we selected the variance of the vague component so that

it corresponds to a unit-information prior. More precisely, the variance of the vague component is such
that corresponds to the information brought by one subject per arm in the target study. Note that, given
that the variance of the outcome in the target study is assumed equal to the empirical variance, setting this
vague component in the prior corresponds to a form of empirical Bayes. For normally distributed treatment
effects, the vague component variance is set to NTσ2

θT
, where σθT is the standard error on the treatment effect

obtained from the target data alone.

5.8.2 Parameters to be varied

The parameter that determines the amount of borrowing is the prior mixture weight w. A grid of values
ranging from 0 to 1 in steps of 0.1 would be considered.

5.8.3 Implementation

In the case of a normal likelihood, we used the RBesT package. In the Aprepitant case, we relied on a custom
implementation using Stan.

6 Prior Effective Sample Size

The amount of borrowing is most easily measured using the concept of prior effective sample size (ESS).
Prior ESS corresponds to the number of pseudo-observations required to update a vague conjugate prior to
the prior of interest (viewed as the posterior from previous analysis). For instance, in a beta-binomial model,
the parameters of the Beta(a, b) prior can be interpreted as the posterior obtained after observing a successes
and b failures, starting from a vague Beta prior (with a and b arbitrarily small). Similarly, a normal prior
with variance σ2/n corresponds to a prior ESS of n, starting from a normal prior with variance σ2. However,
the prior ESS is not clearly defined for non-conjugate priors.

Neuenschwander et al. (2020) introduced an information-based ESS (in the context of one-dimensional
parameters), the expected local-information-ratio (ELIR), which has the property of being "predictively
consistent", meaning that the expected posterior predictive ESS for a sample of size NT is equal to the sum of
the prior ESS and NT . The ELIR is defined as follows:

ELIR = Eθ

[
Iπ(θ)

I1(θ)

]
(25)

where I1(θ) is the expected Fisher information for one information unit, given by:

I1(θ) = −E

[
∂2 log L (θ|D1)

∂θ2

∣∣∣∣θ] , (26)

and D1 denotes a dataset with one subject per arm. The Fisher prior information Iπ(θ) is given by:

Iπ(θ) = −
∂2 log p(θ)

∂θ2 . (27)

Importantly, the ELIR is predictively consistent and thus correctly quantifies the amount of information as
an equivalent number of observations.
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7 Bayesian operating characteristics

The motivations for using Bayesian equivalents of type 1 error and power are well summarized and discussed
in Best et al. (2023). The main argument for considering these operating characteristics is that Bayesian
metrics should be used for Bayesian designs, with a willingness to adopt the Bayesian approach also for
assessing the risk of, e.g., declaring a treatment as effective which in reality is ineffective.

7.1 Background on Bayesian equivalents of type 1 error rate and power

All metrics related to type 1 error rate and power are a special case of the success decision criterion rate
(Psioda and Ibrahim 2019; Best et al. 2023):

r(θT |dS) = Epd(θT)
[φB(DT |DS = dS)|θT ]

=
∫

Pr( Study success | θT , DS = dS)pd(θT)dθT ,
(28)

where φ is the decision function, which equals 1 when the null hypothesis is rejected, and 0 otherwise; and
where the conditional power is defined as:

CP(θT |dS) = Pr(Study success | θT , DS = dS)

=
∫

I {Pr (θT > θ0 | DT , DS = dS) ≥ η} p (DT | θT) dDT ,
(29)

and pd(θT) is the so-called design (or sampling) prior. Note that this prior typically depends on the
source study data. Indeed, the prior on the treatment effect used when computing the conditional power in
29 is the prior that is used at the analysis stage, which is why it is called the analysis prior (also referred to as
the fitting prior). By contrast, the design prior, used when computing the expected conditional power in 28,
can be distinct.

7.2 Computation of Bayesian Operating Characteristics

To compute the average type 1 error rate, the pre-posterior probability of false (or true) positive, the prior
probability of study success and the average power, we considered two alternatives. A first possibility
is to rely on nested Monte Carlo integration, by sampling Nθ values of θT from the design prior, and
estimate Pr(Study success|θT) based on NR replicates, and finally compute the average probability of
success. However, this approach bears a high computational cost, due to nested integration.

Another approach is to estimate the probability of success evenly on a given range, then compute the
Bayesian Operating Characteristics by integrating Pr(Study success|θT)pd(θT) using Simpson’s rule. This
approach is computationally beneficial, as it does not require recomputing the probability of success for
each design prior and, allows reusing results obtained from the computation of frequentist OCs. In pilot
comparisons between an MC-based estimation of Bayesian OCs and a method based on deterministic
integration, we observed that deterministic integration led to an accurate estimate of Bayesian OCs, despite
the small number of values of θT considered (from 25 to 50). This is probably due to the smoothness of the
integrands. Note that this method implies a limited integration range, and therefore implicitly assumes that
the integrand goes to zero for extreme values of the chosen range. The integration range corresponded to the
range of treatment effects considered in the definition of the scenarios.

Note that it is not possible to compute Bayesian Operating Characteristics with an analysis design prior
for methods that use empirical Bayes. Indeed, in this case, it is not possible to sample from the prior before
having access to the data. However, these data are themselves sampled from the prior. Therefore, for several
methods, we only reported Bayesian Operating Characteristics obtained with a unit-information design
prior or with the source posterior as design prior. However, Bayesian OCs obtained with such priors usually
provide bounds for those obtained with an analysis prior.

7.3 Bayesian type 1 error rate and power

Ibrahim et al. (2012), Chen et al. (2014), and Psioda and Ibrahim (2019) suggested an approach in which the
usual frequentist type 1 error is integrated with respect to a null design prior distribution for the treatment
effect. They define the Bayesian type 1 error rate (or average type 1 error rate) as:

Epnull(θT) [r(θT |dS)] , (30)

where pnull(θT) denotes the null design prior.
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Metric Design prior

Average TIE Truncated analysis prior Truncated UI prior Truncated source posterior

Prior proba. of no
treatment benefit

Analysis prior UI prior Source posterior
Pre-posterior
proba. of FP

Upper bound on
the proba. of FP

Table 6: Summary of design priors used to compute Bayesian OCs related to type I error.

Metric Design prior

Average power Truncated analysis prior Truncated UI prior Truncated source posterior

Prior probability
of study success Analysis prior UI prior Source posterior

Pre-posterior
proba. of FP

Table 7: Summary of design priors used to compute Bayesian OCs related to power.

Metric Definition

Average TIE
∫

Pr(Study success|θT)
π(θT |DS=dS)I{θT≤θ0}

Pr(θT≤θ0)
dθT

Prior proba. of no treatment
benefit Pr(θT ≤ θ0)

Pre-posterior proba. of false
positive Pr(Study success, θT ≤ θ0) =

∫
θT≤θ0

Pr(Study success|θT)pd(θT)dθT

Upper bound on the proba. of
false positive Pr(Study success|θT = θ0)× Pr(θT ≤ θ0)

Table 8: Summary of Bayesian OCs related to type I error.

Metric Definition

Average power
∫

Pr(Study success|θT)
π(θT |DS=dS)I{θT>θ0}

Pr(θT>θ0)
dθT

Prior probability of study suc-
cess Pr(Study success) =

∫
Pr(Study success|θT)pd(θT)dθT

Pre-posterior probability of
true positive Pr(Study success, θT > θ0) =

∫
θT>θ0

Pr(Study success|θT)pd(θT)dθT

Table 9: Summary of Bayesian OCs related to power.
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Similarly, the Bayesian power (or average power) is defined by Psioda and Ibrahim (2019) as :

Epalt(θT) [r(θT |dS)] , (31)

where palt(θT) denotes the alternative design prior. Note that this is related to the concept of probability of
success (POS) (also called assurance, O’Hagan et al. (2005) and Chuang-Stein and Kirby (2017)), but POS is
computed with equal analysis and design priors.

When computing the average type 1 error rate (resp. power), Psioda and Ibrahim (2019) suggest that a
logical choice for the design prior is the normalized analysis prior truncated on the range of values for the
treatment effect that are consistent with the null (resp. the alternative). They define the default design priors
as :

pi
d(θT) = π(θT |DS = dS, θT ∈ Θi), i ∈ {0, 1}

For example, the null design prior pnull (θT) corresponds to the analysis prior distribution of θT ,
π(θT |DS = dS), assuming H0:

pnull (θT) =
π(θT |DS = dS)I {θT ≤ θ0}

Pr (θT ≤ θ0)
,

Thus, the sampling priors under the null and alternative hypotheses arise by truncation of the prior elicited
from the source study and subsequent normalization. We followed this approach when choosing the design
priors.

Additionally, we used the two following design priors:

• “Truncated source posterior”, chosen to be the normalized truncated lower tail (≤ θ0) of the posterior
from the source studies under an initial improper prior.

• “Truncated UI prior”, chosen to be the normalized truncated lower tail of a unit-information prior
based on source data, centered on θ0. Concretely, if we assume a normal likelihood, the UI design
prior is N (θ̂S, s2

S), where s2
S is the sample variance in the source study. To define a unit-information

prior in the Aprepitant case study. We used the following approach : we performed a separate
analysis of data similar to the source data, but with a treatment effect estimate of 0. We then
approximated the corresponding posterior using a mixture of Beta distributions. We computed the
corresponding ESS using RBesT’s moments matching method and scaled the parameters of the Beta
components by dividing them by the ESS.

These two design priors gave us an estimate of the range of values that the Bayesian OCs can take for
a given analysis prior, from a skeptical design prior (the truncated UI prior) to an optimistic prior (the
truncated source posterior).

In the Aprepitant case study, the UI prior is defined using the following approach: we perform inference
on the target data using a separate analysis. We then approximate the posterior using a mixture of beta
distributions thanks to RBesT. We compute the moment-based ESS of this mixture approximation and scale
the coefficients a and b of each comment by dividing them by the ESS. This ensures that the resulting ESS of
the mixture is 1. In the Aprepitant case, the source posterior, used as a design prior, is defined using a Beta
Binomial model starting from a flat prior on each rate. That is, by noting N(a)

S the number of participants in

arm a of the source study, and n(a)
S the number of successes in arm a of the source study:

π(θT) =
∫ min(1,1−θT)

max(−θT ,0)
Beta

(
p(c)T + θT |1 + n(t)

S , 1 + N(c)
S N(t)

f ailures

)
Beta

(
p(c)T |1 + N(c)

successes, 1 + N(c)
f ailures

)
dp(c)T

(32)

7.4 Pre-posterior probability of a false positive result

Best et al. (2023) suggested using an alternative metric to address "the inconsistency between the prior
information and the null treatment effect by explicitly accounting for the probability that the treatment effect
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is null or harmful under a suitably-chosen design prior":

m̃ (CP(θT), Pr (θT ≤ θ0) , p(θT)) = m (CP(θT), pnull (θT))︸ ︷︷ ︸
Average type 1 error

× Pr (θT ≤ θ0)︸ ︷︷ ︸
Prob treatment effect is null/harmful

=
∫

Pr( Study success | θT)
π(θT |DS = dS)I {θT ≤ θ0}

Pr (θT ≤ θ0)
dθT × Pr (θT ≤ θ0)

=
∫

Pr( Study success | θT)π(θT |DS = dS)I {θT ≤ θ0} dθT

=
∫

θT≤θ0

Pr( Study success | θT)π(θT |DS = dS)dθT

This is the average type 1 error rate (with respect to the null design prior) multiplied by the prior probability
(under the corresponding untruncated version of the design prior) of the treatment effect being null or
harmful. It is equivalent to the joint probability of the true treatment effect being null or harmful and
the study being declared a success It is sometimes referred to as “type III error” of actually drawing a
false positive conclusion (Spiegelhalter and Freedman 1986), or pre-posterior probability of a false positive
result. We reported this metric, as well as the corresponding pre-posterior probability of a true positive (see
definition in Table 9, and corresponding design priors in Table 7).

Other metrics important at the design stage are the prior probability of no treatment benefit, the prior
probability of study success (which, from a Bayesian point of view, can be seen as a prior predictive probabil-
ity), and upper bound on the pre-posterior probability of FP (see definitions in Table 8 and corresponding
design priors in Table 6).

8 Major deviations from the protocol

8.1 Aprepitant case study

Initially, the approach envisioned for the Aprepitant case study (in which the treatment effect is a difference
in proportions), was to put beta priors on the proportion of responders in each arm, and define the treatment
effect as the difference in these proportions. However, with this approach, we do not directly define a
prior on the treatment effect, but indirectly through the response rates in each arm. We instead followed an
approach initially described in Jin and Yin (2021), in which a prior is put on the target study control rate
(such as a beta prior or a uniform prior in the [0,1] range), and a prior is put on the target study treatment
effect (such as a truncated normal). The target study response rate in the treatment arm is the difference
between the treatment effect and the rate in the control arm.

8.2 Prior Effective Sample Size

To introduce the concept of prior Effective Sample Size (ESS), consider a normal prior on the parameter of
interest, µ ∼ N (µ0, σ2

0 ). The likelihood is p(D|µ, σ) = ∏n
i=1 ϕ(xi|µ, σ2), where σ is known, and ϕ(x|µ, σ2) is

the normal probability density function with mean µ and variance σ2. We denote σ the sampling standard
deviation (it is denoted as the "reference scale" in the RBesT package). The posterior after observing n data

points is p(µ|D, σ) = N (µ|µn, σ2
n), with σ2

n = (n/σ2 + 1/σ2
0 )
−1, and: µn = n σ2

n
σ2 x + σ2

n
σ2

0
µ0. The prior ESS, is a

measure of the informativeness of the prior distribution in terms of number of samples. If we start with a
noninformative prior (σ0 → +∞), the effective sample size of the posterior distribution is n, and the effective
sample size of the prior is 0. The variance of the posterior will be σ2/n in this case. Therefore, in the more
general case where the prior has variance σ2

0 , the prior ESS is σ2/σ2
0 .

So, if we have some distribution N (µ, τ2), by assuming this distribution corresponds to the posterior
derived from an uninformative prior updated after observing m data points sampled from a normal dis-
tribution with known standard deviation σ (the reference scale), we have that : τ2 = σ2/m. So, we have
an ESS : m = σ2

τ2 . What should be the value of σ? In our simulation study, when inferring the treatment
effect from data, we assumed that the sampling standard deviation σ for the target study data is known and
corresponds to the target study data sample standard deviation. Therefore, we set σ = sT , where sT is the
target study sample standard deviation.

In our study, we estimated the prior ESS by computing the ESS of the posterior distribution, and
subtracting the target study sample size per arm. To compute the ESS of the posterior distribution, we used
the RBesT package in a three steps procedure: first, we sampled 1000 samples from the posterior distribution,
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then we approximated the posterior based on these samples using a mixture of normal distributions (or a
mixture of beta distributions, in the Aprepitant case study), then, we computed the ESS of the corresponding
mixture approximation. The goal of using a mixture approximation is solely to be able to use RBesT.

Moments-based posterior ESS We used RBesT functionalities to compute the moment-based ESS of the
mixture approximation. The moment-based matching method used in RBesT is the following:

1. Compute the moments of the distribution of interest.

2. Define a distribution from a family for which computing the ESS is trivial (such as normal, beta, or
gamma) with the same moments.

3. Compute the corresponding ESS, which is an approximation to the ESS of the distribution of interest.

For example, in the case of a Gaussian posterior with posterior variance σ2
(p),i at iteration i, and sample

standard deviation σi , the moment-based ESS is σ2
i /σ(p),i − NT/2. In the Aprepitant case study, before

approximating the distribution with a mixture, we linearly transformed the samples so that they fit in the
[0, 1] range instead of the [−1, 1] range: we transformed each sample x into (x + 1)/2. Indeed, there is no
standard distribution with support [−1, 1].

Precision-based posterior ESS The precision-based matching method, inspired from the moment-based
matching method, proceeds as follows:

1. Compute the mean of the distribution of interest, and the half-width of the 95% credible interval
(CrI).

2. Define a distribution from a family for which computing the ESS is trivial (such as normal, beta, or
gamma) with the same precision. Note that this may not be sufficient to uniquely define a matching
distribution (for example, in the Gaussian case, any translation of this distribution would have the
same precision). Therefore, it may also be required to match the mean for matching distributions
with two degrees of freedom (which is the case of the normal, beta, and gamma distributions).

3. Compute the corresponding ESS, which is an approximation to the ESS of the distribution of interest.

When the summary measure is assumed normally distributed, it makes sense to match the posterior
distribution of the treatment effect with a Gaussian distribution. Consider that the variance of the posterior
distribution over the treatment effect is τ2, and denote ρ the half-width of the 95% CrI. For a Gaussian
with variance τ2, the half-width of the 95% CrI is given by Φ−1(1 − α/2)τ, with α = 0.05. Therefore,
if we match any distribution with a Gaussian with the same mean and half-width of the 95% CrI, the
matching distribution will have standard deviation τ = ρ

Φ−1(1−α/2) . Therefore, we can simply reuse the
moment-based matching code in RBesT by replacing the standard deviation of the matching distribution
with τ = ρ

Φ−1(1−α/2) .
When the summary measure likelihood is the model structure in Figure 2 (Aprepitant case), we could

match the posterior distribution over the treatment effect with a linearly transformed gamma or beta
distribution, however, there is no analytical formula for the precision in the case of a beta distribution or
a gamma distribution. Therefore, we could match the precision and mean of the distribution of interest
and the transformed gamma/beta by numerically solving a minimization problem (note that this is a 1D
minimization problem, as we can easily match the mean). We opted for a simpler approx, by matching the
posterior distribution of the treatment effect with a Gaussian. This method is suitable in cases where the
posterior distribution is approximately Gaussian and the 95% high density interval of the matching gaussian
is within the [−1, 1] range.

8.3 Commensurate Power Prior

The commensurate power prior was implemented for a variety of priors on the heterogeneity parameter.
However, preliminary tests showed that a Cauchy prior on log(heterogeneity) could lead to divergence
issues. Reducing the scale parameter from 30 to 10 led to relatively similar priors with less divergences.

8.4 Maximum type 1 error rate

The tender required to report the "maximum type 1 error in a pre-specified [drift] range". Given that there is
only one value for the type 1 error rate (for δ = θ0 − θ̂S), we do not report the "maximum type 1 error rate".
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8.5 PDCCPP

In order to apply the PDCCPP method, we reused the code provided in Nikolakopoulos et al. (2018). This
required minor adaptation to work for treatment effect extrapolation, instead of control arm borrowing. In
many scenarios, we found that the method encountered convergence issues when inferring the calibration
parameter c. It was not possible to determine why this convergence issue occurred, and in which range of
scenarios. Therefore, we did not include this method in the final simulaton study.

8.6 Elastic prior

The elastic prior implies running a simulation study for a specific method, and then calibrating the amount
of borrowing based on the results of the simulation. This calibration aims at maximizing some objective
function that implements the trade-off between an increase in power in the “congruent” case and an increase
in type 1 error in the incongruent case. This calibration procedure is not specific of the method and could be
applied to all partial extrapolation methods that include a parameter determining the borrowing strength
(Jiang et al. 2021). However, the code to maximize this objective function is not provided in the original
paper’s supplementary material. Rather, the maxima are hard-coded for each example. This makes it
impractical to adapt the code to our specific use cases. Moreover, the calibration step implies a significant
computational burden, making it impractical to investigate our method in our simulation study, which
involves a very large number of scenarios and replicates. Therefore, we finally did not include this method
in our simulation study.

8.7 Configurations

The configuration originally specified in the protocol, with 10,000 replicates per simulation, implied huge
computational costs. We adapted the number of drift values considered, the number of replicates for two
NPP case studies (Mepolizumab and Teriflunomide), and the number of scenarios (sample size factors,
target-to-source standard deviation ratio), depending on the case study and the method. We made sure
that the reduced configuration still allowed reliable interpretation of the results, in particular regarding
Monte Carlo uncertainty associated with the estimated operating characteristics. Concretely, we first used a
light configuration to cover a large number of drift values (see Table 10). Then, for the three main treatment
effect values (no effect, half effect, and same effect as in the source population), we additionally considered a
configuration with more replicates (see Table 11).

The original configuration is provided, for transparency, in table 12

9 Simulation study implementation

9.1 Code availability

The code developed in this study is packaged and can be used for running and analyzing simulation
studies and for analyzing data using partial extrapolation. It is available as a GitHub repository at https:
//github.com/quinten-health-os/BayesianExtrapolationSimulation. The exact version that was used
for running the simulation study is v0.0.2, whereas the version that was used for the analysis of the results,
results quality checks, and for producing tables and figures is v0.0.3 (no changes were introduced in the
simulation part between v0.0.2 and v0.0.3). The code is precisely documented and version-controlled. In
particular, the main components of the code are illustrated in a series of vignettes. The README.md file
provides instructions for accessing the documentation, including functions references and vignettes, via a
web browser. Additionally, a reference manual is provided in pdf format. Finally, should the code be reused
in future projects, a TODO.md file contains a list of suggested improvements for overall quality and reusability.

9.2 Rationale of the design

The core of the code implements the inference logic: a source data class represents source data, which are
observed. Target data are represented in a different class. They different as we can sample target data
replicates. When initializing a model, source data are provided to it, as well as methods parameters and
MCMC configuration (if applicable), so as to define a prior. Inference is performed by using the inference
method on target data, which updates properties of the model object with moments of the treatment effect
posterior distribution and, if applicable, computes the posterior distribution of borrowing parameters. Note
that inference proceeds in two steps: first, if the method uses empirical Bayes, prior parameters are updated
based on the target data sample, second Bayes" rule is applied.
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Method Case Likelihood #
replicates

# drift
values NS/NT

Denom.
change
factor

σT/σS

EBPP

Botox/Dapagliflozin Normal 5000 33 1, 2, 4, 6 NA 1, 2

Belimumab/Mepolizumab/Teriflunomide Normal 5000 33 1, 2, 4, 6 1/2, 1,
3/2 NA

Aprepitant Normal 5000 33 1, 2, 4, 6 NA NA

NPP

Botox/Dapagliflozin Normal 1000 23 2, 4 NA 1

Belimumab/Mepolizumab/Teriflunomide Normal 1000 23 2, 4 1 NA

Aprepitant Normal 1000 23 2, 4 NA NA

Comm. PP

Botox/Dapagliflozin Normal 1000 23 2, 4 NA 1

Belimumab/Mepolizumab/Teriflunomide Normal 1000 23 2, 4 1 NA

Aprepitant Normal 1000 23 2, 4 NA NA

Others

Botox/Dapagliflozin Normal 5000 33 1, 2, 4, 6 NA 1, 2

Belimumab/Mepolizumab/Teriflunomide Normal 5000 33 1, 2, 4, 6 1/2, 1,
3/2 NA

Aprepitant Binomials 1000 23 2, 4 NA NA

Table 10: Light configuration used in the simulation study. Other methods include separate analysis, pooling, RMP, CPP, and Test-then-Pool
(equivalence test or difference test).
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Method Case Likelihood #
replicates

# drift
values NS/NT

Denom.
change
factor

σT/σS

EBPP

Botox/Dapagliflozin Normal 10000 3 1, 2, 4, 6 NA 1, 2

Belimumab/Mepolizumab/Teriflunomide Normal 10000 3 1, 2, 4, 6 1/2, 1,
3/2 NA

Aprepitant Normal 10000 33 1, 2, 4, 6 NA NA

NPP

Botox/Dapagliflozin Normal 10000 3 2, 4 NA 1

Belimumab Normal 10000 3 2, 4 1 NA

Mepolizumab/Teriflunomide Normal 8000 3 2, 4 1 NA

Aprepitant Normal 10000 3 2, 4 NA NA

Comm. PP

Botox/Dapagliflozin Normal 10000 3 4 NA 1

Belimumab/Mepolizumab/Teriflunomide Normal 10000 3 4 1 NA

Aprepitant Normal 10000 3 4 NA NA

Others

Botox/Dapagliflozin Normal 10000 3 1, 2, 4, 6 NA 1, 2

Belimumab/Mepolizumab/Teriflunomide Normal 10000 3 1, 2, 4, 6 1/2, 1,
3/2 NA

Aprepitant Binomials 10000 3 4 NA NA

Table 11: Compute-intensive configuration used in the simulation study for the three main treatment effect values. Other methods include separate
analysis, pooling, RMP, CPP, and Test-then-Pool (equivalence test or difference test).
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Method Case Likelihood #
replicates

# drift
values NS/NT

Denom.
change
factor

σT/σS

EBPP

Botox/Dapagliflozin Normal 10,000 33 1, 2, 4, 6 NA 1, 2

Belimumab/Mepolizumab/Teriflunomide Normal 10,000 33 1, 2, 4, 6 1/2, 1,
3/2 NA

Aprepitant Normal 10,000 33 1, 2, 4, 6 NA NA

NPP

Botox/Dapagliflozin Normal 10,000 33 1, 2, 4, 6 NA 1, 2

Belimumab/Mepolizumab/Teriflunomide Normal 10,000 33 1, 2, 4, 6 1/2, 1,
3/2 NA

Aprepitant Normal 10,000 33 1, 2, 4, 6 NA NA

Comm. PP

Botox/Dapagliflozin Normal 10,000 33 1, 2, 4, 6 NA 1, 2

Belimumab/Mepolizumab/Teriflunomide Normal 10,000 33 1, 2, 4, 6 1/2, 1,
3/2 NA

Aprepitant Normal 10,000 33 1, 2, 4, 6 NA NA

Others

Botox/Dapagliflozin Normal 10,000 33 1, 2, 4, 6 NA 1, 2

Belimumab/Mepolizumab/Teriflunomide Normal 10,000 33 1, 2, 4, 6 1/2, 1,
3/2 NA

Aprepitant Binomials 10,000 30 1, 2, 4, 6 NA NA

Table 12: Configurations planned in the simulation study protocol. Other methods include separate analysis, pooling, RMP, CPP, PDCCPP, the Elastic
Prior, and Test-then-Pool (equivalence test or difference test).
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When launching a simulation study, all scenarios are generated based on the provided configuration
files. These scenarios are then sequentially treated: source data and target data are initiated, and a model is
defined. Target data replicates are then generated depending on the target data characteristics. The model
is then fitted on each data replicate, and the corresponding inference metrics and frequentist metrics are
computed. The data from the simulation are then analyzed: the sweet spot is computed for each metric of
interest, and the Bayesian operating characteristics are estimated.

9.3 Use of existing code and packages

We tried, as far as possible, to reuse existing methods implementations. Not only did we need to perform
inference with the method of interest, but, to compute the prior ESS using the different approaches we
included (ELIR, difference between the moment-based or precision-based ESS of the posterior and the
target study sample size per arm), we needed to sample from the prior and the posterior distribution.
We identified several packages and code repositories that could potentially be used. The RBesT package
(https://opensource.nibr.com/RBesT/) implements inference with conjugate mixture priors and Bayesian
meta-analysis. It also allows for approximating distributions using mixture distributions, based on samples,
and to compute ELIR and moment-based ESS. We therefore used this package for ESS computation. For
Gaussian endpoints, we used RBesT for Separate Bayesian analysis and Pooling, as well as for the use of
Gaussian Robust Mixture Priors.

The NPP package (https://cran.r-project.org/web/packages/NPP/index.html) contains an imple-
mentation of the Normalized Power Prior for normally distributed endpoints. However, it uses a custom
MCMC implementation, whereas an analytical posterior is available in this case (see Section 5.4). Moreover,
the NPP package requires individual-level data as input. These two elements prompted us to write a custom
implementation for computational efficiency.

The historicalborrow package (https://wlandau.github.io/historicalborrow/index.html) is focused
on control group borrowing. It includes hierarchical models such as the MAC model, as well as pooled and
separate analysis. It also implements simulation routines, but with limited flexibility: it would not allow us
to simulate time-to-event or recurrent event data. Therefore, we did not use this package.

The PowerPriorVari repository (https://github.com/lxt3/PowerPriorVari), which implements vari-
ations of the power prior to borrow from a single source study (Thompson et al. 2021) does not contain
reusable code.

The ESS repository (https://github.com/DKFZ-biostats/ESS), contains implementations of different
methods to estimate different prior ESS measures for a wide variety of models and is well documented.
However, to use a limited number of packages, we only relied on RBesT for ESS computation.

psborrow2 (https://genentech.github.io/psborrow2/index.html) is an R package for conducting
Bayesian dynamic borrowing analyses and simulation studies. However, it focuses on the borrowing of an
external control arm and only implements the hierarchical commensurate prior. It was therefore of limited
use for our study.

The StudyPrior mostly focuses on the case of binomial likelihood. For Gaussian likelihood, the package
implements the Empirical Bayes Power Prior and the Normalized Power Prior. However, for the Empirical
Bayes Power Prior, we used the implementation provided in Nikolakopoulos et al. (2018), and for the
Normalized Power Prior, we used a custom implementation of the analytical posterior to avoid relying on
computationally expensive approximations.

The hdbayes package was released in April 2024 (https://github.com/ethan-alt/hdbayes), well after
the start of the implementation phase of the project. It implements a variety of Bayesian borrowing methods
for generalized linear models. However, it always uses Stan for inference, whereas we were able to use
analytical posteriors in several cases, which provided significant computational gains.

To summarize, we implemented the Gaussian Conditional Power Prior, which is straightforward, and
validated the results by comparing them with Pooling and Separate analysis for a power parameter γ = 1.
For PDCCPP, Test-then-Pool, and Empirical Bayes method, we used the code in Nikolakopoulos et al. (2018).
We only renamed variables for consistency across the code base and split it into different functions. For the
two variants of test-then-pool (with a difference or an equivalence test), depending on the result of the test,
the Pooling or the Separate method (based on RBesT) was used. We also implemented the p-value based
Power Prior, which inherits from the Gaussian Conditional Power Prior. For the Commensurate Power Prior,
we also used a custom implementation in Stan. This was also motivated by the fact that to adapt existing
models to the case where a binomial likelihood is used for each arm data, it would be much easier to adapt a
working custom implementation. Indeed, to handle the model structure described in Figure 2, we had to
rely on custom implementations in Stan.
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9.4 Implementation and quality checks

We separately considered two aspects of quality control for the study: code quality and statistical accuracy.
The code incorporates integration tests, which aim to ensure that code functionality is preserved across
changes in the codebase. The version specifically used for running the simulation study was tagged (v0.0.2).

Moreover, the code was reviewed by a team member who did not directly participate in the implementa-
tion. The following check-list was provided to the reviewer :

• Simulation logic
– Simulation scenarios
– Definition of the source study parameters
– Definition of the target study parameters
– Data generation logic for continuous, binary, time-to-event, recurrent event endpoints

• Frequentist Operating Characteristics
– Test decision
– TIE, Power, 95% coverage, MSE, bias, precision
– Associated MC error

• Inference metrics
– Computation of inference metrics (posterior mean and credible interval)

• Bayesian Operating Characteristics
– Definition of the design priors
– Computation of the different Bayesian OCs

• Methods
– Hierarchical dependencies between models classes
– Priors definitions
– Inference (posterior mean and variance)

• Analysis
– Computation of power at equivalent type 1 error rate

Statistical accuracy of the results was validated based on manual checks, involving a comparison of
the figures produced with relevant published figures. We initially intended to implement automatic tests
comparing the results with relevant published tables. However, this proved to be difficult, due to differences
in the settings considered (in particular, borrowing of control arm instead of treatment effect, which would
require modification of the code to handle borrowing of control arm only), or lack of reproducibility of
published results (which was confirmed using other packages such as RBesT).

To ensure the reproducibility of the study, the seed of the random number generator was set once at the
same value when each scenario was simulated. The state of the random number generator was stored at the
beginning and the end of each new simulation.

9.5 Deployment

Given the huge number of scenarios considered, and the large number of replicates, we required access to
the French national supercomputer Adastra (National Computer Center for Higher Education). However,
due to unknown reasons related to Stan, the post-processing of Markov chains was much longer than normal
on this machine (of the tens of seconds). A similar issue arose on our local machines. We therefore attempted
to use the containerization framework Singularity, as there exists Singularity container images that include
cmdstanr. However, there were several issues with this solution. First, the available images run on the latest
version of Ubuntu, which implies security issues which do not conform to the strict security requirements of
high performance computing facilitites. Second, even within the Singularity container, we were not able to
run inference with cmdstanr. However, cases that do not require cmdstanr can run within the container, and
we provided the recipe file for building the Singularity container with the rest of the code, which provides
very high reproducibility for our study. However, we managed to get Stan working on an AWS EC2 instance
within a Docker container, although at a slower speed than what would have been achievable with Adastra.
Therefore, all runs that required MCMC inference were performed on the AWS EC2 c5.12xlarge instance,
while the remaining runs were launched on Adastra. Unfortunately, due to the difference between these
machines, it would not be possible to make sensible comparisons between computation times. Although
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these computation times are recorded in the results, we therefore will not present a comparison of the
different methods’ speed. Another issue we faced is that, when running in a Docker container on the AWS
EC2 instance, the code would sometimes unexpectedly stop running without any error message being
recorded in the logs. Despite our best efforts we were not able to identify the root cause of this issue.
This incurred considerable time loss, and required automated checks to ensure simulations completeness
and accurate concatenation of the different results files. While searching for a tradeoff between accuracy,
computational time and time spent managing disparate results files, we decided to discard a Method/Case
study result file as long as one scenario was missing and to rerun the corresponding Method/Case study
with all scenarios. Moreover, an additional issue we encountered was the fact that tasks were limited to 24
hours on Adastra, which forced us to reduce some configurations so that run would be completed within
this time window.

10 Application to real cases

The following sections give additional context on the selected studies for each type of endpoint. When a
Bayesian analysis was published for a given study, we summarized the approach that was used.

10.1 Continuous endpoint

Botox

Case study: Introduced in Wang et al. (2022)

Endpoint: Score related to the disease

Summary measure: Difference in mean scores between the two arms (normally distributed)

Context: Published phase III placebo-controlled randomized paediatric clinical trial to evaluate the safety
and efficacy of a single treatment of two doses (4 U/kg and 8 U/kg) of Botox with standardized physical
therapy (PT) in paediatric patients with lower limb spasticity. Paediatric approval was based on this study.

The same product was previously approved in adults on the basis of a single-phase III placebo-controlled
study in a similar indication. In the paediatric trial, 412 subjects 2 to 16 years and 11 months of age were
randomized in a 1:1:1 ratio to the Botox 8 U/kg group, Botox 4 U/kg group, or control group. The full label
information is available at https://www.fda.gov/media/131444/download. The original analyses for both
the adult and paediatric trials were frequentist approaches.

Bayesian analysis: Wang et al. (2022) re-analyzed the primary efficacy endpoints using a Bayesian model.
The approximate 95% CI for the treatment difference between Botox 4 U/kg group and control is (-0.10,
0.30) in the paediatric trial, which contains zero, i.e., not enough evidence to declare treatment superiority to
control. Therefore, Wang et al. (2022) aimed at proposing an innovative Bayesian adaptive design to achieve
treatment efficacy while maintaining good trial property.

For the case study, Wang et al. (2022) focused on the Bayesian analysis on two arms, the Botox 4 U/kg
group and control group as the Botox 4 U/kg group was less efficacious. They studied a Bayesian adaptive
design based on an informative prior (derived from adults data).

Dapagliflozin

Case study: None

Endpoint: Decrease in HbA(1c) from baseline (%).

Summary measure: Difference in mean decrease in HbAc between the two arms (%), from baseline to week
24/26 (normally distributed).

Context: Correction of hyperglycaemia and prevention of glucotoxicity are important objectives in the
management of type 2 diabetes. Metformin is the regulatory-approved treatment of choice for most youth
with type 2 diabetes early in the disease. However, metformin does not always provide adequate glycemic
control, thereby necessitating add-on treatment.

However, the fact that metformin provides adequate control for many patients (up to 50% of patients in
the Treatment Options for Type 2 Diabetes in Adolescents and Youth (TODAY) study), sizably diminishes the
patient pool. In addition, insulin use has traditionally been an exclusion criterion, eliminating approximately
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half of the paediatric patient population. Additional inclusion/exclusion criteria (e.g., required HbA1c range,
major medical conditions, concomitant meds, and prior diabetes medication use) further shrink the available
patient pool.

Dapagliflozin, a selective sodium-glucose cotransporter-2 inhibitor, reduces renal glucose reabsorption in
an insulin-independent manner.

Shehadeh et al. (2023) report a 26-week, phase 3 trial with a 26-week extension among young patients (10
to 17 years of age) with uncontrolled type 2 diabetes (HbA(1c) 6.5 to 10.5%) receiving metformin, insulin,
or both. Participants were randomly assigned 1:1:1 to 5 mg of dapagliflozin (N=81), 2.5 mg of saxagliptin
(N=88), or placebo (N=76). Patients in active treatment groups with HbA(1c) ≥7% at week 12 were further
randomly assigned 1:1 at week 14 to continue the dose or up-titrate to a higher dose (10 mg of dapagliflozin
or 5 mg of saxagliptin). The primary endpoint was change in HbA(1c) at week 26. Analysis of the data
demonstrated effectiveness of dapagliflozin.

Bailey et al. (2010) describe a phase 3, multicentre, double-blind, parallel-group, placebo-controlled trial,
including 546 adults with type 2 diabetes who were receiving daily metformin (≥1500 mg per day) and
had inadequate glycaemic control (NCT00528879). They were randomly assigned to receive one of three
doses of dapagliflozin (2.5 mg, n=137; 5 mg, n=137; or 10 mg, n=135) or placebo (n=137) orally once daily.
The primary outcome was change from baseline in HbA(1c) at 24 weeks. For correspondence between the
study in adults and paediatrics, we focused on the arms receiving 5mg daily dapagliflozin. 267 patients were
included in analysis of the primary endpoint (dapagliflozin 5 mg, n=133; placebo, n=134). At week 24, mean
HbA(1c) had decreased by -0.30% (95% CI -0.44 to -0.16) in the placebo group, compared with -0.70% (-0.85
to -0.56, p < 0.0001) in the dapagliflozin 5 mg group. We use the aggregate data from Bailey et al. (2013): the
treatment effect is 0.36 (95% CI 0.16 to 0.56).

10.2 Binary endpoint

Belimumab

Case study: From Best et al. (2023) and Psioda and Xue (2020) (study how adult data could have been
prospectively used in the design of the paediatric trial). The results of the PLUTO trial in paediatrics are
reported in Brunner et al. (2020). Brunner et al. (2021) performed a comparison of studies, including PLUTO
and trials in adults (BLISS).

Endpoint: SLE Responder Index

Summary measure: Log odds ratio for Benlysta compared to placebo (normal approximation)

Context: FDA approval of belimumab (Benlysta) IV formulation for use in paediatrics aged 5-17 years with
active, seropositive lupus erythematosus (SLE).

Benlysta was approved by the FDA for adult patients with SLE in 2011. A paediatric post-marketing
study was required and the applicant undertook to conduct a randomized, double-blind, placebo-controlled
trial targeting to enroll 100 paediatric subjects 5 to 17 years of age with active systemic SLE. The paediatric
study was not fully powered by design, efficacy was planned to be descriptive and no formal statistical
hypothesis testing was proposed. The study was completed in 2018, with a total of 92 subjects.

Bayesian analysis: To facilitate the review of Benlysta, the FDA requested a post-hoc Bayesian analysis to
further evaluate the efficacy of Benlysta in paediatric SLE patients by utilizing relevant information from the
adult studies. The rationale was to provide more reliable efficacy estimates in the paediatric study in a setting
where the clinical review team believed that the disease and patient response to treatment are likely to be
similar between adults and paediatrics (see FDA’s review https://www.fda.gov/media/127912/download
for details). The analysis was based on the use of a robust mixture prior.

Evidence of efficacy has been established in adults in two independent pivotal Phase 3 trials, which are
pooled and considered to be one single source of historical data. The primary endpoint was response at
week 52 on the SLE responder index (SRI), and the summary measure of treatment effect was the odds ratio
for Benlysta compared to placebo. The pooled odds ratio based on a total of NS = 1125 subjects from these
studies was 1.62 (95% CI 1.27 - 2.05), which on the log odds ratio scale corresponds to a point estimate of
yS = 0.48 with standard error of sS = 0.121.

Aprepitant

Case study: From Jin et al. (2021)
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Endpoint: No vomiting and no use of rescue therapy 0–24 h after surgery.

Summary measure: Difference in response rates between aprepitant and placebo.

Context: Aprepitant for the prevention of postoperative nausea and vomiting in paediatric subjects.
A multicenter, randomized, partially-blinded phase IIb study (Salman et al. 2019) evaluated the phar-

macokinetics (PK)/pharmacodynamics, safety, and tolerability of aprepitant in paediatric subjects for the
prevention of postoperative nausea and vomiting (PONV). Subjects aged birth to 17 years scheduled to
undergo surgery and receive general anesthesia with ≥1 risk factor for PONV were randomly assigned
to 1 of 3 aprepitant dose regimens (a single oral dose of aprepitant equivalent to adult doses of 10 mg, 40
mg, or 125 mg), or a control regimen of ondansetron before anesthesia. Assessments included PK, safety,
and exploratory efficacy (complete response [CR; no emesis, retching, or dry heaves and no rescue therapy
within 0-24 h following surgery] and no vomiting [NV; no emesis, retching, or dry heaves within 0-24 h
following surgery]).

The difference in response rates in the treatment group and control group is 3.4% and the lower bound of
the 95% CI is -11.2% . The study did not meet the non-inferiority criterion with margin -10% . This could be
due to the fact that the study is not adequately powered (the post hoc power is 43% ). An adult trial with
sample size 293 and 280 in the treatment and control groups was completed before (Diemunsch et al. 2007),
and the response was 63.0% in the treatment group, and 55.0% in the control group.

10.3 Time-to-event endpoint

Teriflunomide

Case study: Bovis et al. (2022)

Endpoint: Time to first relapse

Summary measure: Log hazard ratio for active treatment compared to placebo (normal approximation)

Context Multiple Sclerosis (MS) is rare in paediatrics. The Safety and Efficacy of Teriflunomide vs Placebo
in paediatric Multiple Sclerosis (TERIKIDS) study (Chitnis et al. 2021) was a negative trial assessing teri-
flunomide in paediatrics (57 placebo vs 109 teriflunomide). The 34% reduction in the incidence of relapses
observed in the teriflunomide treatment group of the TERIKIDS trial failed to achieve statistical significance.
However, no compelling biological or clinical reasons indicate that evidence obtained in adults should be
ignored when deciding treatment strategies for paediatric MS.

Bovis et al. (2022) applied a Bayesian approach for estimating the effect of teriflunomide in paediatrics in
the TERIKIDS study , by integrating the available knowledge on teriflunomide in adults. As source studies,
they used published data from 2 randomized clinical trials testing teriflunomide (14 mg) in adult patients
with MS (TEMSO3: 363 placebo vs 359 teriflunomide, O’Connor et al. (2011); TOWER4: 389 placebo vs 372
teriflunomide, Confavreux et al. (2014)).

Bayesian analysis: They pooled hazard ratios (HRs) and 95% CIs on time-to-first relapse (log scale) by
inverse of variance weighting. To account for differences between the adult and the paediatric populations
and between some details of the study designs, the prior distributions were down-weighted by 50% or 75%.
The log(HR) values were assumed to be normally distributed.

The observed HRs of teriflunomide on time-to-first relapse in TEMSO, TOWER, and in TERIKIDS
were 0.72 (95% CI, 0.58-0.90), 0.63 (95% CI, 0.50-0.79), and 0.66 (95% CI, 0.39-1.11), respectively. The prior
distribution obtained by pooling the results of the 2 trials in adults was centered at HR 0.68 (95% CI,
0.58-0.79).

10.4 Recurrent event endpoint

Mepolizumab Ortega et al. (2014) contains data for the placebo, Mepolizumab SC and Mepolizumab IV
group (adults and adolescents are pooled). The adolescent group included 9 control patients (see page 95 of
the EPAR), 16 received Mepolizumab IV or SC, (see page 95 of the EPAR), for a total of 25 patients. The total
number of adult patients was 551, with 182 in the control group and 369 receiving Mepolizumab. According
to Best et al. (2021), the log(RR) in adolescents is -0.40 with standard error 0.703, whereas the log(RR) in
adults is -0.69, with standard error 0.13.
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To determine the rate in the adult control group, we used the data from Ortega et al. (2014) we assumed
that the effect of the paediatric subgroup in the overall rate computation is negligible, and therefore set the
adult control rate equal to the overall control rate, 1.74. We then computed the rate in the treatment group so
as to be consistent with the control rate and the log(RR) reported in Best et al. (2021), that is 0.87.

Case study: Described in detail in Best et al. (2021), based on a post hoc analysis of the MENSA trial of
mepolizumab in severe asthma (Ortega et al. 2014) by Keene et al. (2020).

Endpoint: Rate of clinically significant exacerbations, analyzed with a negative binomial generalized linear
model with a log link function.

Summary measure: Log event rate ratio obtained from negative binomial regression of the observed
exacerbation counts (normal approximation) for active treatment compared to placebo

Context: MENSA was a randomised, placebo-controlled, double-blind, parallel group trial comparing
mepolizumab 100 mg subcutaneous (SC) (n = 194) and mepolizumab 75 mg intravenous (IV) (n = 191) with
placebo (n = 191), given every 4 weeks for 32 weeks in patients with severe asthma with an eosinophilic
phenotype who had a history of at least two asthma exacerbations in the previous year while receiving
treatment with high dose inhaled steroids and at least 3 months of treatment with an additional controller.
The trial was funded by GlaxoSmithKline (ClinicalTrials.gov number: NCT01691521). The primary endpoint
was the rate of clinically significant exacerbations per year, which were defined as worsening of asthma such
that the treating physician elected to administer systemic steroids for at least 3 days or the patient visited
an emergency department or was hospitalised. The trial included 25 adolescent (ages 12-17) and 551 adult
subjects (aged ≥ 18). In the overall population, the trial showed strong evidence of a reduction in the rate of
exacerbations.

Analysis was performed using a negative binomial generalised linear model with a log link function. The
model included a categorical covariate for age group (12-17 years old, ≥ 18 years old) and the interaction of
age group with treatment group, with additional adjustment for baseline covariates (oral corticosteroid use,
region, exacerbations in the previous year and baseline % predicted FEV1).

The yearly rate of exacerbations was reduced by 47% (95% CI: 28-60) among patients receiving 75 mg IV
mepolizumab and by 53% (95% CI: 36-65) among those receiving 100 mg SC mepolizumab, as compared
with those receiving placebo. The two active treatment arms provided similar reductions in exacerbation rate
compared to placebo and were therefore combined for the evaluation of subgroups; overall the reduction
with the two active treatments combined was 50% (95% CI: 35-61).

Bayesian analysis: There was interest in assessing the treatment effect in adolescents but due to the low
incidence of severe asthma with an eosinophilic phenotype in adolescents, the conduct of a separate
study was considered impractical and there were insufficient adolescent subjects in the MENSA study to
show statistical significance when this subgroup was analysed separately. A Bayesian dynamic borrowing
approach based on a Robust Mixture Prior allowed assessment of the degree of belief needed in the relevance
of the adult data to conclude that there was evidence of efficacy in the adolescent subgroup. Indeed, based on
knowledge of the disease pathology in adults and adolescents and the mechanism of action of mepolizumab,
there is a strong rationale to believe that efficacy in adolescents should be consistent with that in adults. To
assess the sensitivity to the strength of prior belief in the consistency assumption, a tipping point analysis
was carried out to identify how much prior weight needed to be placed on the adult prior component of
the robust mixture prior in order for the posterior estimate of efficacy for adolescents to show evidence of
treatment benefit.

11 Results

The raw results files are available as supplementary material. The tables containing raw results for frequentist
OCs, Bayesian OCs derived from Simpson integration, and sweet spots, can be found in the Zenodo record
14780493. The numerous figures and tables produced are available in Figures/ and Tables/. Here, we only
present a small selection so as to illustrate our results.

In the figures legends, a "Consistent" effect means that the true treatment effect in the target study is
equal to the observed treatment effect in the source study, that is, there is no drift. A "partially consistent"
effect means that the true treatment effect in the target study is equal to the half of the observed treatment
effect in the source study.
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11.1 Inference

11.1.1 Convergence issues

We encountered severe convergence issues when applying the Commensurate Power Prior with a Cauchy
hyperprior on the heterogeneity parameter, although decreasing the scale of the Cauchy distribution from 30
to 10 tends to reduce the fraction of cases in which this problem occurs. However, using a half-normal or an
inverse gamma distribution led to successful convergence. With the Commensurate Power Prior, we found
it useful to adaptively increase chain length, as in several cases the MCMC ESS was much smaller than the
total number of draws.

11.1.2 Impact of the drift on the posterior distribution

Figure 3 shows, in the Botox case study, the mean of the posterior distribution of the target study treatment
for the three main treatment effects considered, and for the different methods. Error bars correspond to
the 95% Credible Interval. The posterior distribution strongly depends on the amount of borrowing, with
more borrowing leading to a posterior mean closer to the estimate of the source study treatment effect (that
is, potentially increased bias), and narrower CrI (reduced variance). In most cases, the CrIs are similar or
narrower when the treatment effect in the target study is more consistent with the treatment effect estimate
in the source study. This implies that even fixed borrowing methods tend to reject the null hypothesis less
often in case of inconsistencies between the source and the target studies.
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Figure 3: Posterior mean of the treatment effect in the target trial averaged across all simulation replicates,
and associated 95% CrI (also averaged over all replicates), for the tree main treatment effects considered, in
the Botox case study (θ̂S = 0.2) with 234 patients per arm in the target trial.
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11.2 Impact of borrowing on the probability of success

11.2.1 Type I error inflation

Type I error inflation, that is, a type 1 error increase above the value α that would be obtained for a Bayesian
separate analysis with a critical value η = 1− α, is the main concern when using partial extrapolation in the
context of clinical trials. We observed type 1 error rate inflation in the vast majority of scenarios, irrespective
of the method used and its parameterization (supplementary file noninflated_tie_cases.csv). The only
case where inflation was not observed are listed in table 13. The rare cases where type 1 error rate inflation
was not observed in the botox case study occurred when the ratio between the target and source standard
deviation was two, with the conditional power prior with γ = 0.25, and small sample sizes in the target trial
(NT/2 = 58 or 39). In the Teriflunomide case, the absence of TIE inflation occurred when the denominator of
the source study summary measure was halved. We systematically observed TIE inflation due to borrowing
in the Aprepitant, Mepolizumab, and Dapagliflozin case studies.

Figure 4 and 8 (left panel) illustrate type 1 error rate inflation across the different methods, showing that
this behavior is systematic as long as information is borrowed, for all treatment effects considered.
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Figure 4: Comparison of the Probability of Success of the different methods in the Belimumab case study,
with a target sample size per arm of 281

11.2.2 Power gains under type 1 error control

A major question regarding the use of partial extrapolation methods is whether power gains can be obtained
by leveraging external data sources, with a controlled increase in type 1 error rate. If an increase in type
1 error rate is inevitable, then, would the power of the method be higher than the power of a frequentist
test (without borrowing) at an equivalent TIE? Intuitively, the use of external information that was used in
demonstrating the effectiveness of a drug should increase power, and this may also increase the risk of a
type 1 error. In the absence of drift, one may presume that the type 1 error rate will not increase.

The estimated type 1 error rate of the test with borrowing αB, and the estimated power for θT > θ0 with
borrowing 1− βB(θT) (βB(θT) denotes the type II error rate), are obtained using the following Monte Carlo
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Table 13: Cases in which no inflation of the TIE was observed

Method Case study NT/2 Source denom. change factor σT/σS

botox 39 1.0 2
Conditional PP, γ = 0.25 botox 58 1.0 2

mepolizumab 68 0.5 NA
RMP, w = 0 teriflunomide 370 1.0 NA

Conditional PP, γ = 0 teriflunomide 741 0.5 NA

p-PP, k = 1, λ = 0.1 teriflunomide 741 0.5 NA

p-PP, k = 10, λ = 0.1 teriflunomide 741 0.5 NA

p-PP, k = 20, λ = 0.1 teriflunomide 741 0.5 NA

RMP, w = 0 teriflunomide 741 0.5 NA

Separate teriflunomide 741 0.5 NA

TtP (diff.), η = 0.1 teriflunomide 741 0.5 NA

TtP (diff.), η = 0.4 teriflunomide 741 0.5 NA

TtP (diff.), η = 0.8 teriflunomide 741 0.5 NA

TtP (eq.), η = 0.1, λ = 0.1 teriflunomide 741 0.5 NA

TtP (eq.), η = 0.5, λ = 0.1 teriflunomide 741 0.5 NA

approximation :

αB =
1

Nsims

Nsims

∑
i=1

φB(d
(i)
T |dS), d(i)T ∼ p(DT |θT = θ0)

βB(θT) =
1

Nsims

Nsims

∑
i=1

φB(d
(i)
T |dS), d(i)T ∼ p(DT |θT)

(33)

where Nsims is the number of samples drawn from p(DT |θT), and φB(d
(i)
T |dS) is an indicator of meeting the

success criterion with borrowing for dataset d(i)T .
To allow for a fair comparison of the power of the test with and without borrowing, Kopp-Schneider

et al. (2023) suggest evaluating the TIE rate of the test with borrowing, αB, and to compare the power
with and without borrowing (βB(θT) and β(θT) respectively) at a TIE of αB. Therefore, we also analytically
evaluated the power of the frequentist test at level αB and not only the standard 2.5%. This should allow
us to determine whether the Bayesian method has any additional power beyond that gained from simply
using a method that increases the traditional frequentist type 1 error rate. Put another way, the goal here is
to ascertain whether the improved power is simply bought at the expense of type 1 error control, and if so,
which, if any of the models outperform frequentist approaches with an explicitly greater type 1 error rate.

We systematically screened the simulation outputs in order to determine in which cases a power gain
was observed at comparable type 1 error rate. The typical pattern we observed is depicted in Figure 5, when
plotting the probability of success as a function of drift: the curve representing the probability of success of
the borrowing method as a function of drift does not significantly differ from the corresponding curve of the
frequentist t-test at equivalent type 1 error rate. Note that the uncertainty related to the frequentist power at
equivalent type 1 error rate comes from the uncertainty regarding the equivalent type 1 error rate for the
borrowing method.

In some cases a power gain was observed, which however only occurred in case studies other than
Botox and Dapagliflozin. We observed, that in several cases, the method of interest was a separate Bayesian
analysis (for example, a conjugate power prior with a power parameter of zero). We discuss this paradoxical
result in detail in the discussion section.
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Figure 5: Probability of success of the Conditional Power Prior with γ = 0.25 as a function of the drift
in treatment effect (black) in the Belimumab case study at a sample size per arm of 93, without change
introduced in the denominator of the source study summary measure. The probability of success of the
t-test at a nominal type 1 error rate of 0.025 as a function of drift is displayed in blue. The probability of
success of the t-test at a type 1 error rate equal to the Conditional PP type 1 error rate is displayed in green.
Borrowing of external data that favors the null hypothesis also implies that the probability of success of the
borrowing method is always larger, in the alternative hypothesis space, than the probability of success of the
frequentist method at the nominal type 1 error rate of 0.025. The power curves at equivalent type 1 error rate
are identical. θT = θ0 is indicated by a dashed line. Error bars correspond to the 95% Confidence Interval of
the metric.

11.2.3 Power loss due to borrowing

We noticed a behavior of adaptive borrowing methods, in which the probability of success of the borrowing
method is lower than the probability of success of the frequentist method at equivalent type 1 error rate in
the alternative space (Figure 7). Again, we systematically screened the results for such cases (supplementary
file power_loss_cases.csv), the vast majority of which occurred at inflated type 1 error rate (supplementary
file power_loss_inflated_tie_cases.csv). This phenomenon occurred in all case studies, but we focused
our analysis on the Botox and Dapagliflozin case studies when investigating this behavior, so as to exclude
an effect due to a discrepancy between the data-generating process and assumptions in the t-test (see 12.3).
This phenomenon mostly occurs with adaptive borrowing methods, and for most of them. Importantly, it
depends on the target study sample size: most occurrences appeared for small target study sample sizes.
Moreover, a ratio between the source and target standard deviation of 2 (instead of 1) also increased the
sensitivity of methods to this phenomenon. Indeed, in this setting, the test-then-pool variants and the
p-value-based PP incurred power loss in the Botox case study for a sample size per arm as large as 234, and
the EBPP, which seems more robust overall, was subject to power loss only in this case of higher standard
deviation (for a sample size per arm up to 58).

The test-then-pool method based on a test for difference seems especially prone to this issue for a large
value of the significance threshold, as it was heavily affected for a target sample size as large as 234 patients
per arm in the Botox case study, for a significance threshold of 0.8.
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Figure 6: Probability of success of the Conditional Power Prior with γ = 0 (no borrowing) as a function of
the drift in treatment effect (black) in the Mepolizumab case study at a sample size per arm of 137, without
change introduced in the denominator of the source study summary measure. The probability of success of
the t-test at a nominal type 1 error rate of 0.025 as a function of drift is displayed in blue. The probability of
success of the t-test at a type 1 error rate equal to the Conditonal PP type 1 error rate is displayed in green. In
this example, an apparent power gain is observed despite the Bayesian analysis being a separate analysis.
Error bars correspond to the 95% Confidence Interval of the probability of success.

11.2.4 Impact of the drift on the probability of success.

Figure 8 and Figure 4 show, in the Botox and Belimumab case studies, the probability of success across all
simulation replicates and associated 95% CrI. Note that the ordering of methods is made with respect to type
1 error rate (absence of effect, corresponding to a large drift), and it is overall preserved in case of moderate
or even absence of drift (partially consistent and consistent effects). We notice that the ordering of methods
with respect to the Probability of Success is almost invariant with respect to drift. We observed a similar
pattern across target study sample sample sizes and case studies. This implies that power gains are at the
expense of increased type 1 error, with some methods sometimes incurring greater type 1 error rate inflation
than others at equivalent power gains.

To get a more precise comparison of methods, we compared their power as a function of type 1 error. We
observed that no method seemed to consistently outperform the others across scenarios and endpoints: most
methods aligned a similar power vs type 1 error rate curve. However, the test-then-pool variants tended to
show decreased power at equivalent type 1 error rate compared to other methods (Figure 10 and 9)

Figure 11 shows the probability of success as a function of drift, in the Belimumab case study, across
methods. The vertical dashed lines mark the three values of interest for the drift indicating no effect, partially
consistent effect and consistent effect compared to the source study (corresponding to figure 8). This figure
gives a more detailed view of the variation of the probability of success across methods. The ranking
of the methods remains consistent across all drift scenarios. Conditional PP consistently emerges as the
top-performing method, exhibiting the highest success probabilities regardless of the drift level. Separate
and RMP methods consistently rank lower, with reduced success probabilities. This stability in ranking
suggests that the relative effectiveness of these methods is independent of the drift magnitude.
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Figure 7: Probability of success of the p-value-based Power Prior with parameters k = 20 and λ = 20 as a
function of the drift in treatment effect (black) in the Botox case study at a sample size per arm of 58, with a
sampling standard deviation equal between the source and target study. The probability of success of the
t-test at a nominal type 1 error rate of 0.025 as a function of drift is displayed in blue. The probability of
success of the t-test at a type 1 error rate equal to the p-value based PP type 1 error rate is displayed in green.
θT = θ0 is indicated by a dashed line. In this example, the power of the p-value based power prior is lower
than the power of the frequentist t-test at equivalent type 1 error rate in the whole alternative hypothesis
space. Error bars correspond to the 95% Confidence Interval of the probability of success.

Drift range for which the success probability is lower than the nominal type 1 error rate Figure 12 presents
the drift range for which the success probability is lower than the nominal Type I Error rate in the Botox case
study (with a sample size of 234 subjects per arm in the target trial). The figure highlights the fact for very
small drift values, the probability of success gets smaller than the nominal type 1 error rate.

Drift range for which the success probability is larger than the nominal power Figure 13 illustrates the
drift range in treatment effect for which the success probability exceeds the nominal statistical power (that is,
the power of a separate analysis) in the Botox case study, using a sample size of 58 subjects per arm in the
target trial. We observe that the power of the borrowing method is uniformly larger than the nominal power
in the whole alternative hypothesis space, while the type 1 error rate is inflated. This is consistent with our
previous results showing that borrowing tend to increase power at the expense of TIE inflation.

11.2.5 Impact of the target study sample size on the probability of success.

Figure 14 shows the probability of success as a function of the study sample size per arm in the Belimumab
case study with a partially consistent effect. The probability of success increases with the study sample
size for all the methods, except for the EBPP and Test and Pool with η = 0.1, for which it is decreasing. In
this setting, pooling the source and target data tends to increase the power. However as the target study
sample size increases, it becomes clearer that there is an inconsistency between the source and target study,
so dynamic borrowing methods will tend to reject the source study data more. This rejection of source study
data can compensate for the benefit of increased sample size, hence resulting in decreasing power with
increased target study sample size.
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Figure 8: Probability of success across all simulation replicates and associated 95% CI, for the three main
treatment effects considered, in the Botox case study with 58 samples per arm in the target trial.

11.2.6 Impact of changes in the denominator of ratio summary measures in the source study on the
probability of success.

We studied the impact of change in the denominator of the source study summary measure on inference in
the Belimumab, Mepolizumab, and Teriflunomide case studies. However, a study in terms of prior ESS is
made difficult when changing the source standard deviation for the reasons explained above (Figure 60).
We observed that changes in the denominator of source studies summary measure had little impact on the
probability of success, but a larger denominator led to a higher probability of success, in a manner that did
not widely differ between methods (Figure 15).

11.2.7 Probability of success as a function of type 1 error rate across methods.

Figure 9 compares, in the Botox case study, the probability of success as a function of type 1 error rate across
methods. The results are explicited in Table 14.

Table 14: Botox, partially consistent treatment effect, NT/2 = 58, σT/σS = 1.

Method Type 1 error rate Power difference

Com.PP, τ ∼ HN(1) 0.030 [0.026, 0.033] 0.0063 [ 0.0010, 0.0118]

Com.PP, τ ∼ HN(5) 0.030 [0.027, 0.034] 0.0060 [ 0.0007, 0.0116]

Com.PP, τ ∼ IG(α = 0, β = 1) 0.029 [0.019, 0.041] 0.0040 [-0.0119, 0.0224]

Com.PP, τ ∼ IG(α = 0.14, β = 1) 0.032 [0.022, 0.045] -0.0030 [-0.0186, 0.0151]

Com.PP, τ ∼ IG(α = 0.33, β = 1) 0.028 [0.019, 0.040] 0.0060 [-0.0099, 0.0244]

Conditional Power Prior, γ = 0 0.029 [0.026, 0.033] 0.0078 [ 0.0025, 0.0133]

Conditional Power Prior, γ = 0.25 0.043 [0.040, 0.048] 0.0036 [-0.0025, 0.0100]
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Conditional Power Prior, γ = 0.5 0.090 [0.085, 0.096] -0.0035 [-0.0112, 0.0044]

Conditional Power Prior, γ = 0.75 0.184 [0.177, 0.192] 0.0037 [-0.0056, 0.0131]

Conditional Power Prior, γ = 1 0.353 [0.344, 0.362] -0.0074 [-0.0172, 0.0024]

EBPP 0.353 [0.344, 0.362] -0.0074 [-0.0172, 0.0024]

NPP, ξγ = 0.5, σγ = 0.1 0.087 [0.082, 0.093] -0.0040 [-0.0116, 0.0038]

NPP, ξγ = 0.5, σγ = 0.2 0.083 [0.077, 0.088] -0.0067 [-0.0142, 0.0010]

NPP, ξγ = 0.5, σγ = 0.4 0.092 [0.086, 0.097] -0.0016 [-0.0093, 0.0063]

Pooling 0.353 [0.344, 0.362] -0.0074 [-0.0172, 0.0024]

RMP, w = 0 0.029 [0.025, 0.032] 0.0047 [-0.0005, 0.0102]

RMP, w = 0.1 0.041 [0.037, 0.045] 0.0047 [-0.0013, 0.0110]

RMP, w = 0.2 0.057 [0.052, 0.061] 0.0019 [-0.0048, 0.0089]

RMP, w = 0.3 0.080 [0.075, 0.086] -0.0095 [-0.0169, -0.0019]

RMP, w = 0.4 0.105 [0.099, 0.111] -0.0029 [-0.0109, 0.0053]

RMP, w = 0.5 0.130 [0.123, 0.137] -0.0025 [-0.0111, 0.0062]

RMP, w = 0.6 0.159 [0.152, 0.167] 0.0011 [-0.0101, 0.0080]

RMP, w = 0.7 0.196 [0.188, 0.203] 0.0040 [-0.0054, 0.0135]

RMP, w = 0.8 0.235 [0.227, 0.244] 0.0018 [-0.0079, 0.0115]

RMP, w = 0.9 0.288 [0.279, 0.297] 0.0085 [-0.0013, 0.0183]

RMP, w = 1 0.353 [0.344, 0.362] -0.0074 [-0.0172, 0.0024]

Separate 0.029 [0.026, 0.033] 0.0078 [ 0.0025, 0.0133]

Test-then-pool (difference), η = 0.01 0.353 [0.344, 0.362] -0.0074 [-0.0172, 0.0024]

Test-then-pool (difference), η = 0.1 0.353 [0.344, 0.362] -0.0074 [-0.0172, 0.0024]

Test-then-pool (difference), η = 0.4 0.351 [0.341, 0.360] -0.0118 [-0.0216, -0.0020]

Test-then-pool (difference), η = 0.8 0.164 [0.157, 0.171] -0.0337 [-0.0424, -0.0248]

Test-then-pool (equivalence), η = 0.1, λ = 0.1 0.029 [0.026, 0.033] 0.0078 [ 0.0025, 0.0133]

Test-then-pool (equivalence), η = 0.1, λ = 0.5 0.349 [0.340, 0.359] -0.0148 [-0.0246, -0.0050]

Test-then-pool (equivalence), η = 0.1, λ = 0.8 0.353 [0.344, 0.362] -0.0074 [-0.0172, 0.0024]

Test-then-pool (equivalence), η = 0.5, λ = 0.1 0.268 [0.260, 0.277] -0.0282 [-0.0379, -0.0184]

Test-then-pool (equivalence), η = 0.5, λ = 0.5 0.353 [0.344, 0.362] -0.0074 [-0.0172, 0.0024]

Test-then-pool (equivalence), η = 0.5, λ = 0.8 0.353 [0.344, 0.362] -0.0074 [-0.0172, 0.0024]

p-value-based PP, k = 0.01, λ = 0.1 0.339 [0.330, 0.348] -0.0059 [-0.0157, 0.0039]

p-value-based PP, k = 0.01, λ = 0.5 0.353 [0.343, 0.362] -0.0079 [-0.0177, 0.0019]

p-value-based PP, k = 0.1, λ = 0.1 0.273 [0.264, 0.281] 0.0026 [-0.0072, 0.0124]

p-value-based PP, k = 0.1, λ = 0.5 0.349 [0.340, 0.358] -0.0110 [-0.0208, -0.0012]

p-value-based PP, k = 1, λ = 0.1 0.039 [0.035, 0.043] -0.0033 [-0.0090, 0.0026]

p-value-based PP, k = 1, λ = 0.5 0.317 [0.308, 0.327] 0.0046 [-0.0052, 0.0144]

p-value-based PP, k = 10, λ = 0.1 0.029 [0.026, 0.033] 0.0078 [ 0.0025, 0.0133]

p-value-based PP, k = 10, λ = 0.5 0.203 [0.195, 0.211] -0.0025 [-0.0119, 0.0070]

p-value-based PP, k = 20, λ = 0.1 0.029 [0.026, 0.033] 0.0078 [ 0.0025, 0.0133]

p-value-based PP, k = 20, λ = 0.5 0.121 [0.115, 0.128] -0.0162 [-0.0244, -0.0079]
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11.3 Impact of scenario parameters on the amount of borrowing.

11.3.1 Impact of the drift on the Prior Effective Sample Size.

Drift tends to reduce the amount of borrowing of adaptive borrowing methods, in a way that strongly
depends on their parameters and the scenario (Figure 16). This behavior is what characterizes adaptation to
drift of these methods. The parameters and methods are not equally conservative: some, like the Test-then-
Pool variants considered, only start discarding external information for very large drift values, so that even
in the absence of treatment effect in the target study, the prior ESS stays of the same order of magnitude as
the target study sample size. By contrast, some adaptive borrowing methods like the EBPP and the RMP (for
w ̸= 1) seem to never fully borrow external information. This behavior is not problematic in itself, as it may
happen that consistency between the target and the source treatment effects happened by mere chance.

11.3.2 Impact of the target study sample size on the Prior Effective Sample Size.

As the target study sample size increases, the confidence in the level of agreement between the source and
target study data increases. Therefore, as the target study sample size increases, one may expect the prior
ESS of adaptive borrowing methods to increase in case of consistent treatment effects, and to decrease in
case of inconsistency. We see in the example in Figure 17, where the treatment effects are consistent, that this
is indeed the case for at least some methods, in particular the RMP, the p-value-based power prior, and the
test-then-pool variants. Methods like the Commensurate Power Prior or the EBPP did not show increase in
moment-based ESS (which we also observed in other case studies as well). We observed that, even with
a partially consistent effect, several methods (test-then-pool with an equivalence test, the RMP, and the
p-value-based power prior), would still borrow more information despite an increase in NT . This is even
more the case when σT/σS = 2 (see Figure 18). Even in the absence of effect, methods like the p-value-based
power prior and the test-then-pool with an equivalence test would still borrow more information from the
source as NT increases, which seems paradoxical (Figure 19).

11.3.3 Impact of changes in the denominator of ratio summary measures in the source study on the Prior
Effective Sample Size.

We found that there was little to no effect of changes in the denominator of the source study summary
measure on the prior ESS (Figure 20).

11.3.4 Impact of the standard deviation in the target study on the Prior Effective Sample Size.

For methods borrowing information from the source study, the moment-based ESS strongly depended on
the ratio between the target and source studies standard deviation (Figure 21). This is explained by the fact
that, as the standard deviation increases in the target study, the relative weight of the prior increases.

11.4 Impact of borrowing on MSE and bias.

11.4.1 Comparison of MSE and bias across methods

Figure 22 compares the MSE of the different methods in the Botox case study for the three main treatment
effects considered. No differences were observed between partially consistent and consistent effect scenarios.
Performance seems to be more driven by the parameters scenarios and level of borrowing than by the actual
methods.

Figure 23 shows the bias of the different methods in the Botox case study for the three main treatment
effects considered.

11.4.2 Comparison of MSE and bias versus type 1 error rate across methods

We plotted, for each method/parameters combination, the MSE against the type 1 error rate of the corre-
sponding method in Figure 25. This provides a measure of the accuracy of the estimation, for a given type 1
error rate inflation. We observed, in the Botox case study, that the test-then-pool variants tend to incur much
larger MSE than other methods at similar type 1 error rate. Similarly, the p-value based power prior displays
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Figure 9: Probability of success as a function of TIE in the Botox case study with a sample size per arm of
58, across all the methods and parameters. The treatment effect is partially consistent, the target-to-source
standard deviation ratio is 1. Error bars correspond to the 95% Confidence Interval of the Probability of
Success and TIE. Dashed vertical line represents the nominal TIE of 0.025.

higher MSE than most other methods. Methods that provide the smaller MSE at comparable type 1 error
rate are the EBPP and the conditional power prior. Importantly, we observe a similar relative behavior of
the different methods across sample sizes and drift values. A similar behavior could be observed in other
case studies. In the Belimumab case study, we observed a similar behavior, apart from the RMP that was the
less performing method in the absence of effect in the target study, but similar to the conditional PP case of
consistent effect.

11.4.3 Impact of the drift on the MSE and bias.

While fixed borrowing methods display a quadratic MSE as a function of drift (and a linear bias) (Figures
26 and 27), adaptive borrowing methods discard external information for large drift values (Figure 28).
Therefore, for large drift values, the frequentist operating characteristics of adaptive methods are equivalent
to those of frequentist methods.

For small drift values, the bias is small while the variance of the posterior distribution of the treatment
effect is reduced compared to the case of a separate analysis. Therefore, the precision of the estimation is
improved compared to a method that borrows less (Figure 28).

For each frequentist operating characteristic, we call the range of drift values in which the operating
characteristic is improved compared to a separate analysis the "sweet spot". Given the limited number of
drift values considered in the simulation, we used linear interpolation to get an estimate of the bounds of the
sweet spots.

If we consider the RMP, it appears that the "discarding" behavior only occurs for extremely large drift
values.
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Figure 10: Probability of success as a function of TIE in the Belimumab case study with a sample size per
arm of 93, across all the methods and parameters. The treatment effect is consistent, the target to source
standard deviation ratio is 1. Error bars correspond to the 95% Confidence Interval of the Probability of
Success and type 1 error rate. Dashed vertical line represents the nominal type 1 error rate of 0.025.

Sweet spot for the MSE. Figure 29 show the sweet spot for MSE, in the Botox case study, with NT/2 = 58.
We see that all methods, except the test-then-pool variants, p-value based-power prior, and separate

analysis, show wide sweet spots relative to MSE, that encompass the range of drift values from no treat-
ment effect to consistent effect. This benefit of borrowing compared to separate analysis is however less
pronounced when the sample size increases in the target study.

Impact of the target study sample size on the sweet spot for the MSE. As the sample size increases in the
target study, the width of the sweet spot for MSE decreases (Figure 30), indicating less robustness of the
benefit of borrowing to drift in treatment effect.

11.4.4 Impact of changes in the denominator of ratio summary measures in the source study on MSE

We observed that MSE tended to decrease with an increase in the denominator of source study summary
measures, although this effect tended to be small. We did not observe systematic differences in the behavior
of different methods in response to these changes. 31.

11.4.5 Impact of changes in the standard deviation in the target study on MSE

An increase in σT/σS resulted in larger MSE 32, which can be explained by an increased variance of the
posterior distribution. However, this increase was mitigated by methods that borrowed a lot of information
from the source study. Again, this can be explained by the limited impact a small data sample with high
standard deviation would have on the variance of the posterior distribution when pooled with a large
amount of source data.
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Figure 11: Probability of success across methods as a function of the drift in treatment effect in the Belimumab
case study at a sample size per arm of 93, without change introduced in the denominator of the source study
summary measure.

11.5 Impact of borrowing on precision.

We measured the precision of the borrowing methods as the mean half-width of the 95% Credible Interval.
We observed on (Figure 33) that the precision is strongly driven by the amount of information borrowed.
The half-width of the 95% Credible Interval is a measure of the strength of the belief represented by the
posterior distribution. It corresponds to the variance component in the bias-variance tradeoff implied when
extrapolating.

Figure 34 shows the typical pattern observed when considering the effect of drift on precision for adaptive
borrowing methods: the precision decreases (i.e., the half-width of the 95% increases), as the drift in treatment
increases. A symmetrical behavior occurs for negative drift values, whereby the precision decreases as the
drift value goes away from zero. This can be understood by considering the behavior of the prior ESS of
adaptive borrowing methods with drift: the prior ESS also decreases in a similar fashion when the drift value
goes away from zero. This implies that the posterior will be less sharp, hence the wider 95% confidence
interval.

As expected, for increasing sample size per arm, the precision also increases (Figure 35).

11.5.1 Precision as a function of type 1 error rate across methods.

The precision was observed to be decreasing with 1 error rate (see Figure 36).
Figure 37 illustrates, in the Botox case, the relationship between precision and type 1 error rate for the

methods tested with a partially consistent treatment effect.

11.5.2 Impact of the drift on precision.

Figure 38 illustrates the precision of the different methods for three main treatment effects considered in the
Botox case study with 39 samples per arm. Overall, the ordering of methods with respect to their precision
tends to be preserved across drift values and mostly depends on the amount of borrowing. Drift seems to
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Figure 12: Sweet spot for the probability of success in the Botox case study with 234 patients per arm.

have a limited impact on precision, but because dynamic borrowing methods discard external information
as drift increases, their precision also tends to decrease as drift increases.

We find that the extent of the sweet spot relative to precision (Figure 39) is strongly related to the amount
of borrowing. Most methods displayed a sweet spot that encompasses

11.5.3 Prior probability of study success

Except in the absence of borrowing, when a UI design prior is more informative than a noninformative
analysis prior, the prior probability of study success is maximal with the source posterior as design prior,
and minimal with a UI design prior. As expected, the prior probability of study success monotonically
increases with the target study sample size, unless a noninformative design prior is used (Figure 42). Indeed,
given that the design priors favor a positive treatment effect, we expect larger sample sizes to increase the
chances of meeting the success criterion. As expected, for all design priors, increased borrowing also leads to
increased probability of study success, as the conditional probability of study success Pr(Study success|θT)
increases with borrowing.

It is interesting to see that only a moderate increase in borrowing strength can dramatically increase the
(Bayesian) probability of study success (Figure 43). This is related to the fact that the frequentist power can
dramatically increase for moderate increase in the level α of the test.

Figure 44 shows the Bayesian type 1 error rate (or average type 1 error rate) for the three different design
priors considered, in the Belimumab case study with a target sample size per arm of 93. Interestingly, the
ordering of methods with respect to their type 1 error rate is the same across design priors, yet the use of the
source posterior as design prior implies a much larger type 1 error rate compared to a UI design prior for
methods that borrow from the source study. More borrowing systematically leads to higher TIE.
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Figure 13: Sweet spot for the probability of success, in the Botox case study with 58 subjects per arm in the
target trial.

Impact of the standard deviation in the target study on the Bayesian type 1 error. Figure 47 and Figure 48
show the average type 1 error rate and power, respectively, across different methods for the Belimumab case
study with a sample size per arm in the target study of 281 patients. We observed a monotonic increase in
average type 1 error rate and average power with increase in borrowing strength.

Note that a UI design prior does not lead to constant average type 1 error rate and power as a function
of borrowing strength, as the mean of the prior is set to the mean of the source posterior. Therefore, we
observed a very small increase in these Bayesian OCs with borrowing strength. As expected, the Bayesian
OCs computed with UI prior and Source posterior bound these Bayesian operating characteristics, except in
the absence of borrowing, where the source Analysis Prior is noninformative, and therefore less informative
than a UI prior. As expected, the average type 1 error rate decreases while the average Power increases with
target sample size per arm (Figure 45 and Figure 46).

Other metrics that can be considered at the design stage are the pre-posterior probability of a false
positive, the prior probability of no treatment benefit, the prior probability of study success (which, from a
Bayesian point of view, can be seen as a prior predictive probability), and upper bound on the pre-posterior
probability of FP (see definitions in Table 8 and corresponding design priors in Table 6). We report these
metrics in the supplementary material.

11.5.4 Bayesian power and type 1 error

Comparison of the Bayesian power across methods Figure 51 shows the Bayesian power (or average
power) for the three different design priors considered, in the Belimumab case study with a target sample
size per arm of 93. As for the Bayesian type 1 error rate, the ordering of methods with respect to their
Bayesian power is the same across design priors, yet the use of the source posterior as design prior implies a
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Figure 14: Probability of success as a function of the sample size per arm in the Belimumab case study, across
methods, without change introduced in the denominator of the source study summary measure. Error bars
correspond to the 95% Confidence Interval of the Probability of Success.

much larger Bayesian power compared to a UI design prior. More borrowing systematically leads to higher
average power. Note that for the separate analysis, the average power is smaller with an analysis prior as
designed prior compared to the UI design prior. This can be explained by the fact that the analysis prior, in
this case, is uniform, and therefore even less informative than a UI design prior. We note that the ordering of
methods with respect to their Bayesian power is the same as the ordering with respect to the Bayesian type 1
error rate (see Figure 44).

Impact of the target study sample size on the Bayesian power. The relationship between the Bayesian
power and the target study sample size is helpful in determining the feasibility and risk of a clinical trial
or program. The simulations show (see e.g. Figure 52) that the impact of the target study sample size is
relatively limited and consistent across methods, except for the separate analysis for which a gain of up to
+10 points on power can be observed by doubling the sample size.

Bayesian power as a function of Bayesian type 1 error rate across methods The simulation results illustrated
by the Belimumab case below show that the average Bayesian power grows with average type 1 error rate,
with a huge impact of the underlying design prior: source prior leading to a 3 times higher power vs. UI
design prior. Figure 54.

Figure 55.

11.5.5 Pre-posterior probability of True Positives (TP)

The Figure 56 below illustrates on the Belimumab case how methods compare on the pre-posterior probability
of true positives (TP) for various design priors. As illustrated below, this metric is highly dependent on the
method, independently from the design prior option. Pre-posterior probabilities are more driven by the
model parameters than by the methods themselves.

©2024 Quinten Health 56



Borrowing treatment effects in clinical trials: simulation study report

Figure 15: Success probability as a function of changes in the denominator of the summary measure from the
source study, with a partially consistent treatment effect.

11.6 How methods’ parameters and drift impact the amount of borrowing

In addition to ELIR, we computed the prior ESS as the difference between the effective sample size of the
posterior distribution and the sample size of the target trial. The calculation of the effective sample size of
the posterior distribution was, in turn, calculated using the "moment-based" matching method described in
the RBesT package as well as a “precision-based” matching method. Briefly, the moment-based approach
matches the mean and the variance of a given prior distribution to a posterior distribution from the conjugate
family updated with data worth the effective sample size. Similarly, the “precision-based” approach matches
on the half-width of the 95% credible interval. Differences between methods are multi-directional and can be
further observed in the appended full results.

In the following sections, we will start by comparing the results obtained with the different prior ESS
measures. Then, focusing on the moment-based ESS, we will describe, for each method, how the prior ESS
varies with drift.

11.6.1 Consistency of the different prior ESS measures

Performing a systematic comparison of the different ESS measures, while possible based on our results, is
out of the scope of this project. However, we observed very similar values between the mean precision-based
ESS, the mean moment-based ESS, and the mean ELIR ESS when the posterior is Gaussian. Therefore, to
avoid redundancy, we will focus our analysis on the moment-based ESS in these cases. Similar figures
with the other ESS measures can be found in the supplementary material. Note that in some cases, such as
for example with the NPP, the ESS ELIR shows erratic behavior for unknown reason. Moreover, in some
cases discussed below, the ESS ELIR method shows widely different results compared to the two other ESS
measures. Figures 57, 58 and 59 show the prior ESS of different methods, for the three main treatment effect
values considered. We show that the ESS ELIR markedly differs from the other measures.

Note that in case studies with non-Gaussian endpoints, the standard error on the treatment effect not
only depends on the sample size in the target study, but on the size of the treatment effect and the drift.
However, the empirical standard deviation is used for computing the ESS. Therefore, care should be taken
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Figure 16: Moment-based ESS as a function of drift in the Botox case study with 234 patients per arm.

in these cases when interpreting the ESS. In theory, the ESS should not depend on the drift value when
performing a separate or pooled analysis (see Figure 60).

11.6.2 Conditional Power Prior

The prior ESS of static borrowing methods such as the Conditional Power Prior is not affected by the
characteristics of the target study (drift and target sample size per arm). The prior ESS is proportional to the
borrowing strength (Figure 61), that is, in the case of the conditional power prior, proportional to the power
parameter γ.

11.6.3 Normalized Power Prior

In the Normalized Power Prior, a Beta prior is put on the power parameter γ. We observed that an increase
in the standard deviation of this Beta prior, σγ, affected differently the prior ESS (Figure 62):

• with a very small value for σγ, the posterior of the power parameter γ will very closely match the
prior. Thefore, the drift will almost not affect the amount of borrowing. Since we set a mean ξγ = 0.5
for this prior, the prior ESS will be about half of the target study sample size per arm.

• With a null treatment effect, increase in σγ implies a decrease in the prior ESS. Indeed, this gives
more flexibility for the posterior of γ to concentrate near zero, hence discarding source study data.

• With partially consistent or consistent treatment effect, increase in σγ implies an increase in the
prior ESS. Indeed, this gives more flexibility for the posterior of γ to concentrate near one, hence
borrowing more source study data.

In agreement with Pawel et al. (2023), we found that in all scenarios and all parameters considered, the
Normalized Power Prior always discounts source data (with values of the upper bound of the 95% CI on the
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Figure 17: Moment-based ESS as a function of the sample size per arm in the Botox case study with a
consistent treatment effect.

prior ESS way below the source study sample size per arm), even in the absence of drift. Indeed, to fully
borrow information from the source study, the posterior on the power parameter γ must be concentrated
near 1. However, with a beta prior on the power parameter that puts significant weight on values below 1,
and given the limited amount of data, the posterior will also tend to put some significant weight on values of
the power parameter gamma below 1 (Figures 63 and 64). The posterior distribution of the treatment effect
implies integrating over gamma in the range [0,1]. Since significant mass of the distribution of gamma is
away from 1, this results in a prior that never fully borrows information from the source.

In our case, with limited sample size of the target data. the power parameter puts significant weight on
values away from 1.

Moreover, an increase in σγ also induced more variability in the prior ESS from one replicate to another,
as can be seen by looking at the width of the 95% CI on the different prior ESS measures. Indeed, a larger
standard deviation for the prior on the power parameter implies that the amount of borrowing will vary
based on random fluctuation of the observed drift between source and target data.

These interpretations are confirmed by looking at the posterior mean of the power parameter distribution
as a function of drift, for different values of the prior standard deviation σγ (Figure 63). The posterior
mean of the distribution of the power parameter γ decreases as drift departs from zero. This translates into
discarding external information. This discarding behavior is strongly dependent on the hyperprior standard
deviation. The most conservative choice, corresponding to large values σγ, leads to a much stronger adaptive
behavior as can be seen by a rapid decrease on the posterior mean of the power parameter distribution.

If we consider the posterior standard deviation of the power parameter distribution as a function of
drift, for different values of the prior standard deviation σγ (Figure 64), we observe a more complex pattern:
for drift values largely deviating from zero, the standard deviation of the power parameter distribution
goes towards zero, meaning that the posterior of the power parameter concentrate near zero. This behavior
is not noticeable, however, for very small prior σγ, translating into a lack of adaptibility. For large prior
σγ, however, we see a slight decrease in the posterior value of σγ, the standard deviation of the posterior
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Figure 18: Moment-based ESS as a function of the sample size per arm in the Botox case study with a partially
consistent treatment effect and σT/σS = 2.

distribution of γ. This implies that, despite a small drift, the posterior distribution of γ does not concentrate
near larger values, but remains quite flat (considering, in particular, that the standard deviation of a Beta
distribution is upper bounder by 0.5). Note also that the larger the stronger the sample size, the larger
the variations for the posterior value of σγ with drift. However, the lack of concentration of the posterior
distribution of γ is a phenomenon we observed across targe study sample size values, which emphasizes the
conservative nature of this method.

The parameter σγ is therefore crucial for the adapting behavior of the method. The impact the standard
deviation of the Beta hyperprior has on the resulting posterior can be visualized for the three main treatment
effect values in Figure 64 and Figure 66. Figure 64 clearly shows that the posterior standard deviation of the
distribution of γ only weakly varies with the drift, but increases approximately linearly with the prior value
of σγ. Figure 66 demonstrates the increased adaptibility of the method with the prior value of σγ.

In the illustrative case of belimumab (Figure 65), the posterior SD of the power parameter in the NPP
grows linearly with its prior SD, independently from the effect scenario considered, here with a slightly
smaller slope when no effect.

11.6.4 Robust Mixture Prior

Figure 67 shows the mean Moment-based ESS of the RMP as a function of the prior weight w, in the
Belimumab case study. The prior weight w of the RMP directly influences the amount of borrowing, as can
be seen by the increase in the prior ESS with w for consistent or partially consistent treatment effects. The
moment-based ESS as we measure it can be negative, which would suggest that in case of strong discrepancy
between the source and target studies, the effect of the source study is equivalent to "removing patients" in
the target study (a similar phenomenon is observed for the precision-based ESS as well). However, we see
that this effect is not appropriately captured as the ESS does not monotonically vary with w in the absence of
treatment effect : the ESS decreases for values of w in [0, 0.5], and increases for values of w in [0.5, 1]. We
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Figure 19: Moment-based ESS as a function of the sample size per arm in the Botox case study with no
treatment effect.

notice that for w = 1, the ESS varies for different drift values, despite systematic pooling of the two studies.
This is caused by the fact that the standard deviation of the generated data, used when computing the ESS,
differs from one replicate to another)

We observed a strange and erratic behavior of ELIR ESS as a function of drift in treatment effect (Figure
68), with the ELIR of ESS of the RMP increasing with the drift. This may be related to the concerns we raised
previously concerning the implementation of the ELIR ESS for mixture distributions in RBesT.

Figure 69 shows the mean moment-based ESS as a function of drift in treatment effect for various target
sample size per arm, in the case of the RMP. Again, the plots highlight the discarding behavior as the drift
increases. The speed at which external information is discarded with drift increases with the target study
sample size. Similarly, the magnitude at which information is borrowed for small drift increases with he
target study sample size, as more information is available that demonstrates consistency between the two
studies. Note, however, an interesting phenomenon of negative moment-based ESS for moderate drift which
only occurs for large sample sizes, which indicates a sample size/drift regime at which borrowing is strongly
detrimental : the external information degrades inference accuracy but does not differ significantly enough
to be completely discarded. Interestingly, we observed this phenomenon for all values of the prior weight w
except 0 and 1.

11.6.5 Test-then-pool equivalence

Figure 70 shows the mean Moment-bases ESS of the test-then-pool method with an equivalence test as
a function of drift, for various parameters. For clearer visualization, Figure 71 and 72 show, in the same
scenario, the mean Moment-based ESS as a function of either the equivalence margin λ or the significance
threshold η, respectively. We see that small values of the equivalence margin lead to systematically rejecting
the source data, unless the significance threshold is largely increased. λ and η have similar effects of
increasing the amplitude of borrowing while decreasing sensitivity to drift.
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source study in the Belimumab case study with 93 patients per arm.
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Figure 21: Moment-based ESS as a function of the ratio between the target and source studies standard
deviation, with a partially consistent treatment effect.
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Figure 22: Comparison of the Mean Squared Error (MSE) of the different methods and associated 95% CI, for
the three main treatment effects considered, in the Botox case study with 117 samples per arm in the target
trial.

Note that even if the curves are smooth in these plots as they represent averages over simulation
replicates, for individual replicates the source data are either pooled or not, which is not the case in other
adaptive-borrowing methods.

11.6.6 Test-then-pool difference

Figure 73 shows the mean Moment-based ESS of the test-then-pool method with a test for the difference.
The behavior of the method is very similar to the one of the test-then-pool method with a test for

equivalence: as the significance threshold increases, the null hypothesis of absence of difference between
the source and target data tend to be more frequently rejected, resulting in less frequent borrowing. The
motivation for using an equivalence test instead of a test for difference stems from the idea that a small
sample size would lead to large p-values in the test for difference, hence leading to systematically pooling
the data. However, we did not observe this phenomenon, as can be seen in Figure 74: over the quite large
range of target treatment effect values considered, there was no systematic pooling whichever the value of η
between 0.01 and 0.8.

11.6.7 p-value-based Power Prior

We found that similar to the test-then-pool method with a test for equivalence, an increase in the equivalence
margin used in the equivalence test of the p-value based Power Prior tend increase the amount of borrowing.
The shape parameter k modulates the amount of borrowing, but quite surpringly, seems to only have limited
impact on the extent to which external information is discarded with drift (Figure 75). Although on average,
the borrowing behavior of this method may look similar compared to the one of the test-then-pool method,
information from the source can be only partially borrowed;
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Figure 23: Comparison of the bias of the different methods and associated 95% CI, for the three main
treatment effects considered, in the Botox case study with 117 samples per arm in the target trial.
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Figure 24: Comparison of the MSE of the different methods for the three main treatment effect values
considered. Error bars correspond to the 95% Confidence Interval of the MSE.
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Figure 25: MSE as a function of type 1 error rate in the Botox case study with a sample size per arm of 58,
across all the methods and parameters. The treatment effect is consistent, the target to source standard
deviation ratio is 1. Error bars correspond to the 95% Confidence Interval of the MSE. Dashed vertical line
represents the nominal type 1 error rate of 0.025.

11.6.8 Empirical Bayes Power Prior

The Empirical Bayes Power Prior does not include parameters that would allow modifying the propensity
of the method to discard external information as drift increases. In Figure 76, we see that the method fully
borrows information in the absence of drift, but tends not to discard external information for small target
sample size arms as drift increases. This lack of conservatism can be attributed to the lack of evidence for
difference between the studies for small sample sizes. However the method fully pool information in the
absence of drift , irrespective of the sample size. This behavior should be compared to the one of other
adaptive borrowing methods such as the RMP, which does not fully borrow information even in the absence
of drift.

11.7 Impact of the use of a Gaussian approximation in the Aprepitant case study

Although we did not directly compare the OCs of a method with or without Gaussian approximation in
the Aprepitant case study, we could perform an indirect comparison by comparing the relative behavior of
EBPP to other methods. Indeed, in this case study, EBPP is the only method for which we used a normal
likelihood. We did not observe a marked difference in terms or relative behavior compared to other case
studies, suggesting that the Gaussian approximation would have limited impact overall.
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Figure 26: Mean Squared Error (MSE) of the Conditional Power Prior as a function of the drift in treatment
effect, for various sample size per arm in the target study. The MSE of static borrowing methods is a quadratic
function of the drift. Error bars correspond to the 95% Confidence Interval of the MSE.
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Figure 27: Bias of the Conditional Power Prior as a function of the drift in treatment effect, for various sample
size per arm in the target study. The MSE of static borrowing methods is a linear function of the drift. Error
bars correspond to the 95% Confidence Interval of the bias.
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Figure 28: MSE as a function of drift for the RMP in the Belimumab case study, with a sample size per arm in
the target study of 93 patients, for different values of the weight of the informative component w. Error bars
correspond to the 95% Confidence Interval of the MSE.
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Figure 29: Sweet spot relative to MSE in the Botox case study, with a sample size per arm in the target study
of 58 patients.
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Figure 30: Sweet spot for the MSE as a function of the sample size per arm in the target study in the Botox
case study.
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Figure 31: MSE as a function of the change factor applied to the denominator of the source study summary
measure, in the Belimumab case study, with a partially consistent treatment effect.
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Figure 32: MSE as a function of the ratio between the target and source studies standard deviation, in the
Botox case study, in the absence of treatment effect.
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Figure 33: Comparison of the precision, measured as the mean half-width of the 95% Credible Interval, of
the different methods for the three main treatment effect values considered in the Belimumab case study.
Error bars correspond to the 95% Confidence Interval of the precision.
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Figure 34: Precision of the EBPP, measured as the mean half-width of the 95% Credible Interval, as a function
of the drift in treatment effect, for various sample sizes. Error bars correspond to the 95% Confidence Interval
of the precision.
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Figure 35: Precision of the EBPP, measured as the mean half-width of the 95% Credible Interval, as a function
of the target study sample size per arm, for the three main treatment effect values considered. Error bars
correspond to the 95% Confidence Interval of the precision.
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Figure 36: Precision as a function of type 1 error rate for Belimumab case study, with the source denominator
change factor of 0.5, sample size arm of 281, without treatment effect, across methods
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Figure 37: Precision as a function of type 1 error rate in the Botox case study with a partially consistent treat-
ment effect sample size per arm of 58, across all methods/parameters combinations. Error bars correspond
to the 95% Confidence Intervals. The dashed vertical line represents the nominal type 1 error rate of 0.025.
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Figure 38: Comparison of the precision of the different methods for the three main treatment effects
considered, in the Botox case study with 39 samples per arm in the target trial.
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Figure 39: Sweet spot relative to precision for the different methods in the Botox case study, with a sample
size per arm of 234 in the target study.
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Figure 40: Probability of prior benefit as a function of the standard deviation of the hyperprior on the power
parameter for the Normalized Power Prior, with a sample size of 281 without change introduced in the
denominator of the source study summary measure (Belimumab case).

©2024 Quinten Health 79



Borrowing treatment effects in clinical trials: simulation study report

0.0

0.1

0.2

0.3

0.4

0.5

0.00 0.25 0.50 0.75 1.00

g

P
r(

N
o 

be
ne

fit
)

Analysis prior

Source posterior

UI prior

Botox, Conditional Power Prior,  NT 2 =  58, sT sS = 1

Figure 41: Prior probability of benefit as a function of the power parameter for the conditional power prior
in the Botox case study.
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Figure 42: Prior probability of study success as a function of the sample size per arm for the conditional
power prior in the Botox case study.
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Figure 43: Prior probability of study success as a function of the power parameter for the conditional power
prior in the Botox case study.
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Figure 44: Bayesian TIE in the Belimumab case study with a target sample size per arm of 93.
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Figure 45: Average power as a function of the sample size per arm for the conditional power prior in the
Botox case study
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Figure 46: Average type 1 error rate as a function of the sample size per arm for the conditional power prior
in the Botox case study
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Figure 47: Average type 1 error rate of the different methods for the three different design priors considered,
in the Belimumab case study with a sample size per arm of 281.
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Figure 48: Average power of the different methods for the three different design priors considered, in the
Belimumab case study with a sample size per arm of 281.
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Figure 49: Average power as a function of average type 1 error rate with UI design prior, across all methods,
for the Belimumab case study. The sample size per arm is 140, with the source posterior as design prior,
without change introduced in the denominator of the source study summary measure.
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Figure 50: Average power as a function of average type 1 error rate with the source posterior as design
prior, across all the methods, for the Belimumab case study. The sample size per arm is 140, without change
introduced in the denominator of the source study summary measure.
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Figure 51: Bayesian power in the Belimumab case study with a target sample size per arm of 93.
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Figure 52: Average power as a function of Study sample size per arm with UI design prior, across all the
methods, for the Belimumab case study without change introduced in the denominator of the source study
summary measure
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Figure 53: Average power as a function of Study sample size per arm with Source posterior as design prior,
across all the methods, for the Belimumab case study without change introduced in the denominator of the
source study summary measure
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Figure 54: Average power as a function of Analysis prior average type 1 error rate with Source posterior as
design prior, across all the methods, for the Belimumab case study. The sample size per arm is 93, without
change introduced in the denominator of the source study summary measure
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Figure 55: Average power as a function of Analysis prior average type 1 error rate with UI design prior, across
all the methods, for the Belimumab case study. The sample size per arm is 93, without change introduced in
the denominator of the source study summary measure
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Figure 56: Pre-posterior probability of TP, for the three design prior, in Belimumab case study. The sample
size per arm is 93.
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Figure 57: Mean Moment-based ESS across different methods in the Belimumab case study with a sample
size per arm in the target study of 93. The black dotted line corresponds to the sample size per arm in the
target study. The red dotted line corresponds to the sample size per arm in the source study. Error bars
correspond to the 95% Confidence Interval of the mean Moment-based ESS.
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Figure 58: Mean Precision-based ESS across different methods in the Belimumab case study with a sample
size per arm in the target study of 93. The black dotted line corresponds to the sample size per arm in the
target study. The red dotted line corresponds to the sample size per arm in the source study. Error bars
correspond to the 95% Confidence Interval of the Mean Precision-based ESS.
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Figure 59: Mean ELIR ESS across different methods in the Belimumab case study with a sample size per arm
in the target study of 93. The black dotted line corresponds to the sample size per arm in the target study.
The red dotted line corresponds to the sample size per arm in the source study. Error bars correspond to the
95% Confidence Interval of the mean ELIR ESS.
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Figure 60: Mean Moment-based ESS as a function of drift in treatment effect in the Belimumab case study
with a sample size per arm in the target study of 93 patients, for three change factors in the denominator
of the source study summary measure. Error bars correspond to the 95% Confidence Interval of the Mean
Moment-based ESS.
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Figure 61: Mean Moment-based ESS as a function of the power parameter for the Conditional Power Prior,
for the three main target treatment effect values. Error bars correspond to the 95% Confidence Interval of the
Mean Moment-based ESS.
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Figure 62: Mean Moment-based ESS as a function of the standard deviation of the hyperprior on the
power parameter for the Normalized Power Prior, for the three main target treatment effect values, in the
Belimumab case study, for a target sample size per arm of 281, without change in the source study summary
measure denominator. Error bars correspond to the 95% Confidence Interval of the Mean Moment-based
ESS.
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Figure 63: Posterior mean of the power parameter distribution in the Normalized Power Prior as a function
of the drift, for different parameters of the Beta hyperprior on the power parameter, in the Belimumab
case study, for a target sample size per arm of 281, without change in the source study summary measure
denominator. Error bars correspond to the 95% Confidence Interval of the posterior mean.
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Figure 64: Posterior standard deviation of the power parameter distribution in the Normalized Power Prior
as a function of the drift, for different parameters of the Beta hyperprior on the power parameter, in the
Belimumab case study, for a target sample size per arm of 281, without change in the source study summary
measure denominator. Error bars correspond to the 95% Confidence Interval of the posterior standard
deviation.
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Figure 65: Standard deviation of the posterior distribution of the power parameter in the Normalized
Power Prior, as a function of the standard deviation of the prior distribution of the power parameter in the
Belimumab case study, for a target sample size per arm of 281, without change in the source study summary
measure denominator. Error bars correspond to the 95% Confidence Interval of the standard deviation.
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Figure 66: Mean of the posterior distribution of the power parameter with the Normalized Power Prior,
as a function of the standard deviation of the prior distribution of the power parameter in the Belimumab
case study, for a target sample size per arm of 281, without change in the source study summary measure
denominator. Error bars correspond to the 95% Confidence Interval of the mean of the posterior distribution.

©2024 Quinten Health 100



Borrowing treatment effects in clinical trials: simulation study report

0

200

400

600

0.00 0.25 0.50 0.75 1.00
w

M
om

en
t 

ba
se

d 
E

SS

No effect

Partially consistent effect

Consistent effect

Belimumab, RMP, ,  NT 2 =  562, Source denominator change factor = 1

Figure 67: Mean Moment-based ESS as a function of the standard deviation of the prior weight w of the
Normalized Power Prior, for the three main target treatment effect values, in the Belimumab case study, for a
target sample size per arm of 281, without change in the source study summary measure denominator. In
the absence of effect, the moment-based ESS can be negative. Error bars correspond to the 95% Confidence
Interval of the Mean Moment-based ESS.
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Figure 68: Mean ELIR ESS as a function of the drift in treatment effect for the RMP with prior weight w = 0.5,
for different sample size per arm in the target study. Error bars correspond to the 95% Confidence Interval of
the mean ELIR ESS.
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Figure 69: Mean Moment-based ESS as a function of the drift in treatment effect for the RMP, in the
Belimumab case study, with a prior weight of 0.5 for various sample size per arm in the target study. Error
bars correspond to the 95% Confidence Interval of the Mean Moment-based ESS.
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Figure 70: Mean Moment-based ESS of the test-then-pool method with an equivalence test as a function of
the drift in treatment effect, for various parameters, in the Belimumab case study with 281 subjects per arm
in the target study. Error bars correspond to the 95% Confidence Interval of the mean Moment-based ESS.
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Figure 71: Mean Moment-based ESS of the test-then-pool method with an equivalence test as a function of
the equivalence margin parameter λ, for the three main drift in treatment effect and significance threshold
η = 0.1, in the Belimumab case study with 281 subjects per arm in the target study. Error bars correspond to
the 95% Confidence Interval of the mean Moment-based ESS.
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Figure 72: Mean Moment-based ESS of the test-then-pool method with an equivalence test as a function of
the significance threshold parameter η, for the three main drift in treatment effect and equivalence margin
λ = 0.5, in the Belimumab case study with 281 subjects per arm in the target study. Error bars correspond to
the 95% Confidence Interval of the mean Moment-based ESS.

©2024 Quinten Health 106



Borrowing treatment effects in clinical trials: simulation study report

0

200

400

-1.0 -0.5 0.0 0.5 1.0

Drift in treatment effect

M
om

en
t 

ba
se

d 
E

SS

Parameters

h = 0.01

h = 0.1

h = 0.4

h = 0.8

Belimumab, Test-then-pool (difference), NT 2 =  281, Source denominator change factor = 1

Figure 73: Mean Moment-based ESS of the test-then-pool method with a test for difference, as a function of
the drift in treatment effect, for various values of the equivalence margin η, in the Belimumab case study
with 281 subjects per arm in the target study. Error bars correspond to the 95% Confidence Interval of the
mean Moment-based ESS.
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Figure 74: Mean Moment-based ESS of the test-then-pool method with test for difference, as a function of the
drift in treatment effect, for various target study sample size per arm and equivalence margin η = 0.4, in the
Belimumab case study. Error bars correspond to the 95% Confidence Interval of the mean Moment-based
ESS.
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Figure 75: Mean moment-based ESS of the p-value based PP as a function of the shape parametr k, in the
Belimumab case study with a sample size per arm in the target study of 281 patients, with λ = 0.5, for the
three main treatment effect values in the target study. Error bars correspond to the 95% Confidence Interval
of the Mean moment-based ESS.
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Figure 76: Mean Moment-based ESS of the Empirical Bayes Power Prior method as a function of the drift
in treatment effect, for various target study sample size per arm, in the Belimumab case study. Error bars
correspond to the 95% Confidence Interval of the mean Moment-based ESS.
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12 Discussion

12.1 Type I error rate of borrowing methods

Our results show that borrowing treatment effects systematically leads to an increased type 1 error rate, to
an extent that strongly depends on methods and method parameters. This is in agreement with previous
literature, with e.g. Campbell (2017) noticing that "if the prior data makes the null hypothesis more unlikely,
it may be no surprise that the type I error probability calculated under the unlikely null hypothesis is
inflated". It is sometimes considered that Bayesian borrowing methods could be used as a principled way
of incorporating prior information on the treatment effect from the source population, at the expense of
increasing the acceptable type 1 error rate, but also with the benefit of increased power. The idea is that one
may agree on a given analysis prior based on assumptions regarding the similarity of the source and target
study, and this assumption would translate into an increased, yet potentially acceptable, type 1 error rate.
However, our results show that methods do not behave equally for a given increase in type 1 error rate, with
some methods providing less accurate estimates at equivalent type 1 error rate compared to other methods.
This is the case, in particular, of the test-then-pool variants, the EBPP, and the p-value-based power prior,
which do not perform as well as fixed borrowing methods when considering this criterion.

12.2 Power losses at equivalent type 1 error rate

Bayesian borrowing methods are sometimes motivated by potential power gains compared to frequentist
methods, with some authors suggesting, in the case of historical control borrowing, that this can be achieved
at equivalent or lower type 1 error rate Viele et al. (2014) and Yang et al. (2023). Indeed, intuitively, an
informative prior containing information from the source population should improve the chance of meeting
the decision criterion in the study in the target population. However, Kopp-Schneider et al. (2020), (preceded
by Psioda and Ibrahim (2019) in the Gaussian case) showed that in terms of power gain, “approaches
adaptively discounting prior information do not offer any advantage over a fixed amount of borrowing, or
no borrowing at all", when a Uniformly Most Powerful (UMP) test exists, which is the case in most settings
encountered in confirmatory trials. The argument can be summarized as follows: let us denote αB the type
1 error rate obtained with borrowing, a borrowing method increases the type 1 error rate to αB. Let us
denote 1− βB the power with borrowing. We can compute the power of 1− β(αB) of a frequentist method
at level αB. By definition, if the frequentist test is UMP, then 1− β(αB) ≥ 1− βB. Our results also provide an
experimental confirmation that no gains in power can be obtained at lower or equivalent type 1 error rate by
using borrowing methods. Calderazzo et al. (2022) proposed a Bayesian decision-theoretic approach which,
in particular, provides a rationale for type 1 error inflation. This approach implies explicitly specifying the
cost associated with each type of error. These aspects were not investigated in our simulation study.

Moreover, Kopp-Schneider et al. (2023) show that, in some cases, Bayesian borrowing methods lead to
non-UMP tests, so that their power at equivalent type 1 error rate is lower compared to frequentist methods.
The behavior of some methods leading to reduced power compared to frequentist methods at equivalent TIE
can therefore be interpreted as the corresponding test not being Uniformly Most Powerful. Such a behavior
was previously noted by Kopp-Schneider et al. (2023) in case of "extreme borrowing". In these scenarios, the
use of borrowing methods is therefore counter-productive. We observed, in particular, that test-then-pool
variants tended to display power loss, in particular in case of consistent treatment effect. Moreover, it is
not clear why static borrowing methods did not show such power loss in the Botox and Dapagliflozin case
studies, despite extreme borrowing. This point would require further investigation.

The "sweet spot" is defined in Viele et al. (2014), in the context of external control borrowing, as a range of
drift values between the control arms at which there is an increase in power and a decrease in TIE compared
to their nominal values (i.e., compared to the power and TIE of a separate analysis of the target study
data). However, in the context of borrowing treatment effect, it is unclear how to generalize this definition.
Indeed, in this latter case, the TIE corresponds to the probability of success for a specific drift value. One
may wonder whether there exists a range of drift values for which the probability of success is higher than
the nominal power, or lower than the nominal TIE. However, we observed, in almost all scenarios and
for all methods considered, that the power of the borrowing method is larger than the nominal power
in the whole alternative hypothesis space, while the TIE error is inflated. These two observations are a
consequence of the fact that the probability of success of the borrowing method is similar to the one of
frequentist tests at equivalent TIE, and borrowing induces inflated TIE because borrowed data favours the
alternative hypothesis.
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12.3 Power gains at equivalent TIE

We reported in the results section that in the Mepolizumab and the Belimumab case studies, some scenarios
could lead to apparent power gains with borrowing methods. We observed, that in several cases, the method
of interest was a separate Bayesian analysis (for example, a conjugate power prior with a power parameter
of zero). In our setting, a Bayesian separate analysis should be equivalent to a frequentist t-test, therefore,
how can we interpret this unexpected result, and what does it mean in terms of the limitations of our study?

The reason we identified is the approximation to the sample standard deviation that is implied by the
t-test. In our estimation of the power of borrowing methods in the Mepolizumab and Belimumab case studies,
we generated data samples according to the true data-generating process. We then assumed a Gaussian
likelihood with a known standard deviation for the analysis. However, when analytically determining the
power of the t-test, we implicitly assumed a χ2 distribution for the standard deviation. Therefore, while a
Gaussian distribution is assumed for the mean when computing the power for the Bayesian analysis and the
t-test, different distributions are assumed for the standard deviation. This explains why we only observed
power gains in the Belimumab case study for small sample sizes, and the Mepolizumab case study, and not
in the Dapagliflozin and Botox case studies (with Gaussian endpoints) and the Teriflunomide case study (in
which the data generating process was approximated by sampling from a Gaussian). A way to circumvent
this issue would be to determine the power of the frequentist analysis by simulation. We performed this as
a supplemental analysis, in the Belimumab case, and observed that the number of scenarios with power
gains decreased dramatically when determining the power by simulation, which confirms our hypothesis
regarding the origin of the previously observed power gains.

This result highlights a key requirement when comparing Bayesian and frequentist methods: one must
make sure that the comparison between a Bayesian borrowing method and a frequentist test is not impeded
by assumptions derived from asymptotic results. A simple way to check this is to compare the frequentist
method to a Bayesian method without extrapolation.

12.4 Robustness of adaptive borrowing methods to drift

An absolute increase in drift tends to increase bias, MSE, and reduces the coverage probability of credible
intervals of borrowing methods. Moreover, positive drift tends to increase power and TIE rate. An important
question regarding the use of such methods is therefore their robustness to drift, which can be defined as
the tendency to maintain good operating characteristics as drift increases. There is a trade-off between
robustness to drift and benefit from borrowing: a more robust method will favor a reduction in bias at the
cost of a larger variance of the estimator. As a measure of robustness, we considered the sweet spots for
the different frequentist operating characteristics. This corresponds, for a given operating characteristic,
to the range of drift values for which borrowing brings an improvement compared to a separate analysis.
Interestingly, the width of the sweet spot for MSE and coverage shrinks as the sample size increases (or the
standard deviation) decreases in the target study. This may seem paradoxical, as one may consider that there
is less risk in borrowing information if the ratio between the source and target studies’ sample size is smaller.

We noticed that some borrowing methods displayed sweet spots relative to MSE that were significantly
narrower than with a pooled analysis. These included the test-then-pool variants and the p-value-based
Power Prior. This suggests that, while these methods do not systematically fully borrow external information,
they are less robust to drift than a pooled analysis.

12.5 Bias and variance of Bayesian borrowing methods as a function of drift

Power gains cannot be obtained while maintaining or lowering the nominal type 1 error rate. The focus
on type 1 error (and type 1 error control) and power in a prospective decision-making framework hardly
makes sense from a Bayesian decision-theoretic point of view, leading to the seemingly paradoxical absence
of power gains with borrowing. If we rather focus on treatment effect estimation accuracy, then we see that
gains can be obtained in terms of MSE or coverage within a limited drift range (the MSE and coverage sweet
spots). This highlights the key benefit of Bayesian borrowing: in this sweet spot, the bias due to drift is
compensated by variance reduction due to the use of an informative prior. If our focus is on the accuracy of
the estimation, one would therefore prefer a borrowing method such that the MSE does not increase too
much outside the MSE sweet spot, and such that this sweet spot encompasses realistic drift values.
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12.6 Comparing borrowing methods

The choice of model parameters modulating information borrowing allows for controlling the amount of
borrowing and the response of the operating characteristics to drift. We saw that for methods such as the RMP,
the Conditional Power Prior, the Commensurate Power Prior, and the test-then-pool variants, it is possible to
adjust the borrowing parameters in the spectrum that goes from no borrowing to pooling. The NPP and the
commensurate power prior differ in that regard, as they never fully pool the source and target study data.
This may be explained by the fact that, with these priors, the prior on the heterogeneity parameters implies
that some posterior probability is always assigned to the possibility of between-studies heterogeneity. At the
design stage, during discussions with regulatory agencies, a rationale for the choice of parameters should be
provided. Because of the sensitivity of operating characteristics to the method’s parameters, it is difficult to
directly compare different methods. One approach may be to consider an operating characteristic of main
interest, for example, the type 1 error rate, and to compare methods anchored on this operating characteristic
(e.g. a target TIE rate of 0.1). This requires calibrating the borrowing parameters to match the target value.
We did not consider this in our simulation study design due to the implied computational burden, but future
work could consider the following approach:

1. Define the operating characteristic for which we need equivalent value across methods to compare
them, and define its target value.

2. In a given scenario, calibrate the method’s parameters to reach the target value for the OC of interest.
• Define the range of parameters considered
• Define a small number of simulation replicates used only for calibration
• Use an optimization algorithm to find the parameter values for which the method matches

the target OC. Note that for methods, some OCs like the probability of success are monotonic
functions of the parameters, which can be leveraged for efficient optimization. Otherwise,
black-box derivative-free optimization algorithms (such as Bayesian optimization) could be
used.

3. Run a simulation study with the calibrated parameters with a large number of replicates.
However, this approach implies a nested simulation, and can therefore be computationally highly

expensive. However, it is practically feasible if the number of scenarios and methods to consider is small. An
advantage is that, in addition to allowing a fair comparison between methods, it directly allows anchoring
an OC of interest, such as type 1 error rate, to a pre-specified value.

We approached the comparison of borrowing methods by considering whether, at similar type 1 error
rate, other characteristics would be more or less improved. Although we were not able to compare method
at exactly the same type 1 error rates, since we included many methods and parameters, it was possible to
make meaningful comparisons.

12.7 Pros and cons of the different methods.

From a practical perspective, key aspects to consider when using a borrowing method are the following:
• Control of type 1 error: It is difficult to control the type 1 error of adaptive borrowing methods,

although some methods such as the PDCCPP (Nikolakopoulos et al. 2018) have been proposed
that do so (see also Calderazzo and Kopp-Schneider (2022)). Overall, static borrowing methods, in
combination with calibration, provide a straightforward way to control type 1 error to a pre-specified
value. Static borrowing methods however may have limited or no ability to adapt to drift.

• Interpretability of the method’s parameters: some methods have free parameters, the value or
prior distribution of which are challenging to specify a priori due to the difficulty in interpreting
them. This is the case of the Commensurate Power Prior, the Normalized Power Prior, or of the
informative prior weight in the RMP. How to translate clinical knowledge into a value or a prior
distribution for that parameter may be challenging.

• Performance at similar type 1 error rate: In this study, we compared frequentist OCs as a function of
TIE across methods. We found that the p-value based PP, the EBPP, and the test-then-pool variants
displayed poor performance compared to other methods when considering accuracy (MSE) and
uncertainty calibration (coverage probability of the 95% CrI).

• Underlying assumptions: Some methods, such as the Conditional Power Prior, assume the treatment
effect in both source and target populations in the same, whereas others include separate parameters
for both and rely on the assumption of exchangeability between the source and target study.

©2024 Quinten Health 113



Borrowing treatment effects in clinical trials: simulation study report

• Difficulty of inference : Implementation of some of the methods investigated may often be difficult
as they rely on using MCMC simulation techniques, which may impact the ability to perform
inference due to convergence issues, especially in settings with limited data.

• Computational burden: this is especially important if a simulation study is required at the design
stage, which is highly likely, and if parameters calibration is intended. Methods such as the
Normalized Power Prior and the Commensurate Power Prior imply a much larger computational
cost when used with a Gaussian likelihood, compared to other methods considered in this study.
Moreover, when no Gaussian approximation is used, MCMC is usually required, which implies a
much larger computational cost.

12.8 Influence of the type of endpoint

Since we did not vary the type of endpoint independently of other scenario parameters, it was not possible to
systematically compare a method’s behavior across endpoints. Furthermore, we often used transformations
of summary measures suitable for a Normal approximation. However, when comparing the different case
studies—particularly the Aprepitant case study, where the likelihood was non-Gaussian—we found no
systematic differences in the observed patterns or the relative performance of methods attributable to the
type of endpoint.

12.9 Bayesian operating characteristics of the analysis prior

For several of the adaptive borrowing methods investigated, the prior is not fully defined until the data in the
target population have been observed. For these methods, it is therefore not possible to compute Bayesian
metrics such as the prior probability of benefit or success, or the pre-posterior probabilities with the analysis
prior as design prior. However, these quantities, particularly the prior probability of benefit, are important
from a regulatory perspective. In these cases, at the design stage, one may consider using a UI design prior
or the source posterior as design prior so as to provide bounds on the metric of interest. However, as we saw
in our results, these bounds can be very large, therefore giving limited information. One may instead use
design priors that correspond to the analysis prior of interest with some fixed hyperparameters, that do not
depend on the target data. For example, in the RMP, the variance of the vague distribution should ideally
be chosen based on the sample variance in the target study to make it ‘worth two subjects from the target
population’. Note that this approach is not practically feasible for all methods.

12.10 Measuring uncertainty on Bayesian operating characteristics

One of the advantages of our simulation study compared to previous work in the field, is the rigorous
estimation and reporting of uncertainty associated with all inference metrics and frequentist operating char-
acteristics. Indeed, many previous work compared their contributed methods to established methodologies,
but the lack of uncertainty reporting limited interpretation.

In this study, however, we did not report uncertainty on Bayesian Operating Characteristics. Indeed, this
would incur a very large computational cost when using Monte Carlo integration or numerical integration
to estimate these OCs. However, the smooth and consistent patterns we observed when plotting these OCs
suggest that the estimates we reported are not affected by substantial simulation error.

13 Conclusions and Recommendations

13.1 Summary

Despite the growing interest in the use of partial extrapolation methods in trials design and analysis, and
their recommendation by regulatory authorities to overcome reduced sample size problems (Committee
for Medicinal Products for Human Use 2006; Institute of Medicine (US) Committee on Accelerating Rare
Diseases Research and Orphan Product Development 2010; Parmar et al. 2016), their use for treatment
effect borrowing, e.g. in rare diseases, remains limited (Partington et al. 2022). Indeed, in practice, no clear
guideline exists as to the selection and evaluation of a Bayesian treatment effect borrowing method. This
stems, in particular, from the lack of systematic comparison of existing methods in a unified simulation-based
assessment framework.

In this study, we performed a large-scale simulation study using realistic scenarios based on real use
cases. We explored a wide diversity of scenarios by varying the sample size of the clinical trial in the target
population, the magnitude of the treatment effect, the link function between observed outcome and statistical
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model for the treatment effect, the variance in the target study, the type of endpoint, as well as the parameters
needed to specify the models.

• This study allowed us to empirically confirm previous theoretical results (Kopp-Schneider et al.
2020) by showing that all models are equivalent to the frequentist approach regarding power at
equivalent type 1 error, irrespective of the type 1 error rate. This implies that the improved power
is simply bought at the expense of type 1 error inflation, and that none of the models outperform
frequentist approaches.

• We showed that in numerous scenarios, borrowing could lead to a test that is not UMP and conse-
quently to power loss compared to frequentist tests at equivalent type 1 error.

• We showed that, if type 1 error control is key, then a calibration-based Power Prior may be the most
promising approach.

• We determined how the amount of information borrowed from the source population depends on
the method parameters and the scenario. In particular, we determined how the borrowing strength
varies with the drift between the target and source studies, and how this impacts on operating
characteristics.

• We evaluated and compared other operating characteristics of the Bayesian approach that have been
proposed.

• We showed that one quantity is key to characterize borrowing methods: the prior ESS for a given
drift value, which depends on how adaptive the method is to discrepancies between the source and
target studies data.

• By comparing frequentist OCs at similar type 1 error rate, we showed that the p-value based
Power Prior, the Test-then-Pool variants and the EBPP methods underperformed compared to other
methods -including fixed borrowing methods- in terms of MSE and coverage.

• We identified key requirements for simulation studies involving borrowing methods, including
comparison of OCs at equivalent type 1 error, MC error quantification, and the risk in not taking
into account differing approximations implied in the computation of power between Bayesian and
frequentist methods.

13.2 Simulation studies for evaluating Bayesian borrowing designs

In a seminal paper, Pocock (1976) discussed qualitative comparability criteria to assess if a control group
from one study should be used to elicit an informative Bayesian prior for another study (see also Hatswell
et al. (2020) for an update) :

1. Control treatment should be the same in both studies.
2. Both studies should have the same requirements for patient eligibility/inclusion and be contempo-

rary.
3. The methods of treatment evaluation must be the same.
4. The distributions of important patient characteristics affecting outcomes should be the same.
5. The historical study must have been performed in the same organization with largely the same

clinical investigators.
6. There must be no other indications leading one to expect differing results between the randomized

and historical controls.

These intuitive criteria could also be applicable to the borrowing of treatment effects from source trials.
But, in practice, in most settings, they will either not be fulfilled or not be verifiable. To overcome this, the
potential for heterogeneity between the source and target trial data should carefully be assessed in order to
justify borrowing. We observed in our simulation study that, when borrowing information, drift may indeed
lead to an overall degradation in operating characteristics, in particular TIE inflation.

In most cases, in particular when using non-conjugate models, analytically controlling the type I error
rate of a design making use of dynamic borrowing is intractable (see however Nikolakopoulos et al. (2018)
and Calderazzo et al. (2022)). This can be problematic as regulatory agencies tend to strongly prefer statistical
methods that do so (Collignon et al. 2018). As a consequence, and because of the uncertainty associated with
the performance of a given method, it is usually recommended to run extensive simulation studies tailored
to the specific problem at hand and to the available source data. The simulations studies should focus on
assessing the operating characteristics of the borrowing method (Committee for Medicinal Products for
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Human Use 2022), in line with what is commonly required for Bayesian analysis of clinical trials (US Food
and Drug Administration 2010; US Food and Drug Administration 2016; US Food and Drug Administration
2019). For example, the EMA states that “a common approach to addressing the risk of TIE rate inflation
when information is borrowed is to carry out multiple simulation studies to quantify this effect.” (EMA.
Qualification opinion for prognostic covariate adjustment (PROCOVA). EMA; 2022.). This is important both
for comparing existing methods, selecting a prior and its hyperparameters (e.g., between-trials variance,
power parameter, mixture weights), and estimating the sample size that can be spared.

Our implementation could be reused to carry out such simulation studies in similar scenarios (that is, a
single source, potentially based on a meta-analysis of multiple source studies, and without covariates). The
simulation framework we developed is highly modular, follows software engineering good practices and
interfaces with existing R packages that implement borrowing methods such as RBesT. It makes it simple for
users to configure a wide variety of scenarios and could be a valuable tool to extensively investigate designs
that use Bayesian borrowing through simulation, analyze clinical trial data using borrowing methods, or
perform sensitivity analyses.

However, we noticed that exploring a variety of scenarios in a non-interactive way could be a tedious task.
Moreover, the current implementation of the simulation study requires users to manually edit configuration
files, which requires some level of understanding of the methods. However, the package we developed
throughout this project could be used to build an interactive tool (such as an R Shiny dashboard for example),
that could easily be used by statisticians to facilitate communication with clinicians. In pilot experiments, we
noticed that 1000 replicates already gave meaningful results. Therefore, determining operating characteristics
with reasonable uncertainty is possible, for most methods, within a few seconds, which would make such a
dashboard sufficiently reactive for users to explore various designs and methods. Inclusion of covariates
could be performed, for example, by interfacing the code with the hdbayes package released in April 2024
(https://github.com/ethan-alt/hdbayes).

13.3 Choice of partial extrapolation methods

We observed that the p-value-based Power Prior and the test-then-pool variants displayed a much larger
MSE at a similar type 1 error compared to other methods. These methods, as well as the EBPP, also showed a
strong reduction in the coverage probability of the 95% CrI in case of drift. These elements provide a strong
argument against the use of such methods. In each case study, it was not possible to identify a method
that would systematically perform better compared to other methods in terms of power gains, estimation
accuracy, and coverage. For example, we observed that the RMP with prior weight in the range 0.1 to 0.9
displayed a more robust coverage probability compared to other adaptive borrowing methods, but similar to
the conditional power prior. However, a surprising result is the overall good performance of the Conditional
Power Prior, a fixed borrowing method, compared to adaptive borrowing method. Over all scenarios and
case studies, the Conditional Power Prior was among the best-performing methods when comparing at
equivalent type 1 error rate, performing better than the RMP in terms of MSE in many cases. This may seem
counterintuitive, as one may expect adaptive borrowing methods to incur lower MSE in the presence of
drift. However, one has to consider the fact that, when comparing methods at equivalent type 1 error rate,
comparison is performed after adaptation, and therefore at similar prior ESS.

A sensible criterion for judging whether a borrowing method is appropriate is the following: as the target
sample size increases and as drift goes to zero, more information should be borrowed. We observed that
some methods, such as the NPP, do not fully borrow external information even in the absence of drift. This
may seem reasonable, as the similarity between the source and target populations may occur due to random
fluctuations. However, the inference process also weights data points based on the variance, so it is not
clear whether such a discounting in the prior is needed in this case. That said, this is fine if it helps with the
regulatory concern of ensuring that the posterior distribution is driven by the results in the target population
in the presence of drift from the source population.

13.4 Sensitivity analyses

From a regulatory perspective, transparency of the methods and interpretability of the borrowing parameters
are crucial. At the analysis stage, conducting so-called "credibility analyses" by varying the borrowing
parameters enhances transparency by showing how much borrowing is needed to reject the null hypothesis.
The credibility of this tipping point is then evaluated by subject-matter experts. A major inconvenience
with this approach is that it requires the borrowing parameter to be intepretable in terms of similarity
between the source and target. This approach has been applied in a successful clinical trial. Indeed, the FDA
approved belimumab in children with systemic lupus erythematosus based on a randomized controlled
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trial (NCT01649765) that evaluated belimumab versus placebo in 93 pediatric patients. Determination of
efficacy was supported by the use of a robust mixture prior borrowing from the established efficacy of
belimumab from two phase 3 adult studies (Pottackal et al. 2019). A tipping point analysis was conducted
which consisted in determining the minimum weight to assign to the informative component of the mixture
prior in order to reject the null hypothesis.

One may wish to verify that conclusions drawn from Bayesian analysis incorporating external data
remain robust across a range of credible assumptions regarding the heterogeneity between the source and
target studies and that any sensitivity of the results to these assumptions is well understood. To address
this need, Best et al. (2021) proposed a method they describe as a type of "analysis of credibility" or "reverse-
Bayes" method, with the goal of assessing "the properties of the prior distribution needed to achieve a
certain posterior statement for the given data" (Matthews 2018; Held 2019; Held et al. 2022). Best et al.
(2021) applied this approach to a robust mixture prior in a pediatric example to identify the minimum
prior probability Pr(Msource) needed to be assigned to the patient-level exchangeability assumption to yield
statistically significant evidence of treatment benefit in children. The credibility of this tipping point can
then be evaluated. In a sense, the idea is to assess the credibility of a conclusion. Essentially, the approach
consists in evaluating the credibility of a conclusion by estimating the level of skepticism required to yield a
non-significant result. Importantly, Best et al. (2021) note that this approach can be used post-hoc (at the
analysis stage) or as part of a pre-planned sensitivity analysis.

When applying a Bayesian borrowing method to a specific scenario, it seems essential to determine the
sensitivity of inference results to hypotheses regarding the similarity between the source and target studies,
in particular regarding the drift. Therefore, methods should be computationally feasible for extensive
simulations to be performed within in a reasonable time. Therefore, computational considerations, often
neglected in the Bayesian borrowing literature, are key to ensuring applicability of these methods. Another
reason to favor computationally inexpensive methods is the potential use of calibration procedures, in which
the method’s parameters are adjusted so as to match a specific type 1 error rate. This requires running a
derivative-free optimization algorithm (typically a grid search, although more efficient approaches such as
Bayesian optimization could be used), which comes at a prohibitive computational cost if inference itself is
computationally expensive. These technical conveniences however must be weighed against other relevant
aspects, such as the overall performance of the proposed approach in terms of operating characteristics.

We found it especially difficult from a technical point of view to work with cases that do not allow
for analytical posterior evaluation or fast numerical integration, that is in the Aprepitant case study and
with the Commensurate Power Prior. This stems, in particular, from a bug in CmdStanR that incurred
prohibitive computational costs, except on an AWS machine. This raises the question as to whether other
approximate Bayesian inference approaches, such as Laplace approximation or variational inference, could
be used instead of MCMC in this context. These methods allow for much faster inference but do not benefit
from the convergence guarantees of MCMC methods. Moreover, there seems to lack R packages that support
the more recent methods for variational inference.

13.5 Choice of likelihood

A systematic comparison of the influence of the likelihood on the performance of borrowing methods was
out of the scope of this study. In the Aprepitant case study, the use of a likelihood that more closely reflected
the true data-generating process implied a lot of additional computational cost compared to using a Gaussian
likelihood for the treatment effect, because of the requirement for MCMC inference. Moreover, methods
are usually designed for Gaussian likelihood, and adaptation and implementation in order not to rely on
a Gaussian approximation can be complex. Therefore, determining the sample size regimes in which a
Gaussian approximation does not impact inference too much could be useful in practice.

13.6 Measuring the prior Effective Sample Size

Our study also highlighted the limitation of the different ESS methods we used. In particular, the ESS measure
should account for differences between the source and target study sample standard deviation, so that the
prior ESS of a separate or pooled analysis does not depend on the drift. Indeed, in the Belimumab case
study for example, an increase in drift induced an increase of the posterior standard error on the summary
measure. Given that the ESS measures we used assumed a Gaussian distribution of the treatment effect,
this corresponded to an increase in the corresponding standard deviation of the Gaussian. At equivalent
information content in the prior but increased estimated standard deviation, this corresponds to a larger
prior ESS. We therefore recommend that sanity checks based on pooled or separate analysis be included in
simulation studies that aim at determining the prior ESS.
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Distribution of the summary statistics Normal Binomial

Source prior Normal Uniform

Conditional power prior Analytic MCMC

Normalized PP MCMC MCMC

Empirical Bayes PP Analytic MCMC

p-value based PP Analytic MCMC

PDCCPP Analytic + Optimization NA

Commensurate PP MCMC MCMC

Robust mixture prior Analytic MCMC

Table 15: Methods used for inference. "Optimization" corresponds to cases where the method requires
(gradient-free) optimization to determine the value of some parameters.
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Appendices
Appendix A Standard deviation of the sample quantiles

To determine the standard deviation of sample quantiles, we follow the following reasoning: let Y be a
continuous random variable with probability density function f , for which we have a sample of size n.
We are interested in determining the distribution of the sample median and 0.975th quantile, denoted Xq
(with q1 = 0.5 and q2 = 0.975 respectively). We adapt the reasoning developed by Dr William A. Huber in
https://stats.stackexchange.com/a/86804/919.

Let’s denote Gq the c.d.f. of Beta(α, β), with α = qn + 1 and β = (1− q)n + 1. Then, the c.d.f. of Xq in x

is Gq(F(x)), so that the p.d.f. of Xq is: ∂Gq◦F
∂x (x) = gq(F(x)) f (x).

So the p.d.f. of the sample quantile is gq(F(x)) f (x).
Now we are interested in approximating the variance of this distribution.
By denoting µq = F−1(q), we have, for sufficiently well-behaved F:

F(x) = F(µq + (x− µq))

≈ F(µq) + F′(µq)(x− µq)

≈ q + f (µq)(x− µq)

(34)

So, assuming f is continuous near µq, the p.d.f. of Xq is approximately : gq(q + f (µq)(x − µq)) f (µq).
This is essentially a shift of the location and scale of the Beta distribution. The variance of Beta(α, β) is :

αβ

(α + β)2(α + β + 1)
,

so that the variance of the sample quantile is approximately:

αβ

(α + β)2(α + β + 1) f (F−1(q))2 ,

So, for large n, this variance can be approximated as : q(1−q)
n f (F−1(q))2 . So for two different quantiles q1 and q2,

the ratio of standard error on the sample quantile is approximately :√
q1(1− q1)

q2(1− q2)

f (F−1(q2))

f (F−1(q1))

For the standard normal distribution, with q1 = 0.5 and q2 = 0.975, this gives a ratio of 0.47.
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