In February 2013, GlaxoSmithKline (GSK) announced a commitment to further clinical transparency through the public disclosure of GSK Clinical Study Reports (CSRs) on the GSK Clinical Study Register.

The following guiding principles have been applied to the disclosure:

- Information will be excluded in order to protect the privacy of patients and all named persons associated with the study
- Patient data listings will be completely removed* to protect patient privacy. Anonymized data from each patient may be made available subject to an approved research proposal. For further information please see the Patient Level Data section of the GSK Clinical Study Register.
- Aggregate data will be included; with any direct reference to individual patients excluded *Complete removal of patient data listings may mean that page numbers are no longer consecutively numbered

PASS information

Title	An observational retrospective database analysis to estimate the risk of Multiple Sclerosis (MS) following vaccination with Arepanrix TM in Manitoba, Canada
Version identifier of the final study report	Final Version 2
Date of last version of the final study report	27 April 2016
EU PAS Register Number	ENCEPP/SDPP/6817
Active substance	J07BB02-AS03-Adjuvanted H1N1 Pandemic Influenza Vaccine
Medicinal product	Arepanrix, Pandemic Influenza vaccine (H1N1) Adjuvanted Split influenza virus, inactivated, containing antigen equivalent to A/California/7/2009 (H1N1)v like strain (X- 179A)
Product reference	EU/1/10/624/001
Procedure number	EMEA/H/C/001201
Marketing Authorisation Holder	GlaxoSmithKline Biologicals Rue de l'Institut 89 1330 Rixensart, Belgium
Joint PASS	No
Research question and objectives	To assess whether administration of <i>Arepanrix</i> during the 2009/2010 H1N1 influenza pandemic was associated with an increased risk of incident MS and other demyelinating conditions not ultimately leading to a MS diagnosis in Manitoba, Canada
Country of study	Canada
Authors	Salah Mahmud, Principal investigator
	Ruth Ann Marrie, Co-investigator

200405 (EPI-FLU H1N1-014 VS) Report Final Version 2

Marketing authorisation holder for the vaccine under study

Marketing authorisation holder	GlaxoSmithKline Biologicals Rue de l'Institut 89, 1330 Rixensart, Belgium	
MAH contact person	PPD	

TABLE OF CONTENTS

					PAGE
1.	ABST	RACT			9
2.	LIST	OF ABBRE	EVIATIONS)	12
3.					
	3.1.			Committee or Institutional Review Board	
	3.2.			ne study	
	3.3.	Subject	ntormation	and consent	14
4.	INVES	STIGATOR	RS		14
5.	OTHE	R RESPC	NSIBLE PA	ARTIES	14
6.	MILES	STONES			15
7.	DATIC	>N A		ROUND	15
1.	7.1.			ROUND	
	7.1. 7.2.			udy	
				·	
8.	RESE			ND OBJECTIVES	
	8.1.	,	,		
	8.2.		, ,	3	
	8.3.	Explorate	ory objectiv	'e	18
9.	AMEN	IDMENTS	AND UPD	ATES	18
10.	RESE	ARCH ME	THODS		18
	10.1.				
				for study design	
	10.2.				
		10.2.1.		iod	
		10.2.2.	Data colle	cted	19
			10.2.2.1.	Subjects characteristics	19
			10.2.2.2.	History of pandemic H1N1 and seasonal	
				influenza vaccines	19
			10.2.2.3.	Case definitions	19
	10.3.	Subjects			20
		10.3.1.	Study pop	oulation	20
		10.3.2.	Inclusion of	criteria	20
		10.3.3.		criteria	
		10.3.4.	Cohort ide	entification and creation	21
	10.4.	Variables			
		10.4.1.		ndpoint	
		10.4.2.		y endpoints	
		10.4.3.	•	ry endpoint	
	10.5.				
		10.5.1.		Health administrative databases	
		10 5 2	Manitoha	Immunization Monitoring System	22

200405 (EPI-FLU H1N1-014 VS) Report Final Version 2

		10.5.3. 10.5.4. 10.5.5. 10.5.6.	Manitoba Health Population Registry (MHPR) Drug Program Information Network Hospital Abstract Database The Medical Services database	23
	10.6.		The medical corride database	
	10.7.		ze	
	10.8.		nsformation	
		10.8.1.		
	10.9.	Statistica	al methods	
		10.9.1.	Main summary measures	
		10.9.2.	Main statistical methods	
			10.9.2.1. Hypotheses	
			10.9.2.2. Analysis Population	
			10.9.2.3. Subject disposition	
			10.9.2.4. Demographic and baseline characteristics	
			10.9.2.5. Analysis of primary endpoint	25
			10.9.2.6. Analysis of secondary endpoints	
			10.9.2.7. Statistical models	
			10.9.2.7.1. Propensity score model	
			10.9.2.8. Conduct of analysis	
		10.9.3.	Missing values	
		10.9.4.	Sensitivity analyses	
		10.9.5.	Amendments to the statistical analysis plan	
	10.10.		control	
11.	RESUI 11.1. 11.2. 11.3.	Participa Descript Outcome 11.3.1. 11.3.2.		28 30 30
	11.4.	iviain res	vulte.	
			sults	31
		11.4.1.	Multiple sclerosis	31 31
	11 5	11.4.1. 11.4.2.	Multiple sclerosis Demyelinating conditions not ultimately diagnosed as MS	31 31 31
		11.4.1. 11.4.2. Other an	Multiple sclerosis Demyelinating conditions not ultimately diagnosed as MS nalyses	31 31 31
12.	11.6.	11.4.1. 11.4.2. Other an Adverse	Multiple sclerosis Demyelinating conditions not ultimately diagnosed as MS	31 31 31 32
12.	11.6. DISCU 12.1.	11.4.1. 11.4.2. Other an Adverse JSSION Key resu	Multiple sclerosis Demyelinating conditions not ultimately diagnosed as MS nalyses events/adverse reactions	31 31 31 32
12.	11.6. DISCU 12.1. 12.2.	11.4.1. 11.4.2. Other an Adverse JSSION Key resu Limitatio	Multiple sclerosis Demyelinating conditions not ultimately diagnosed as MS nalyses events/adverse reactions ults	31 31 31 32 32
12.	11.6. DISCU 12.1. 12.2. 12.3.	11.4.1. 11.4.2. Other an Adverse JSSION Key resu Limitatio Interpret	Multiple sclerosis Demyelinating conditions not ultimately diagnosed as MS nalyses events/adverse reactions ults ons tation	31 31 31 32 32 32 32
12.	11.6. DISCU 12.1. 12.2. 12.3.	11.4.1. 11.4.2. Other an Adverse JSSION Key resu Limitatio Interpret	Multiple sclerosis Demyelinating conditions not ultimately diagnosed as MS nalyses events/adverse reactions ults	31 31 31 32 32 32 32
	11.6. DISCU 12.1. 12.2. 12.3. 12.4.	11.4.1. 11.4.2. Other an Adverse JSSION Key resulation Interpret Generali	Multiple sclerosis Demyelinating conditions not ultimately diagnosed as MS nalyses events/adverse reactions ults ons tation	31 31 32 32 32 32 33
13.	11.6. DISCU 12.1. 12.2. 12.3. 12.4. OTHE	11.4.1. 11.4.2. Other an Adverse JSSION Key resulation Interpret Generali	Multiple sclerosis Demyelinating conditions not ultimately diagnosed as MS nalyses events/adverse reactions ults ns tation isability	31 31 32 32 32 32 36
13. 14.	11.6. DISCU 12.1. 12.2. 12.3. 12.4. OTHE	11.4.1. 11.4.2. Other an Adverse JSSION Key resultimitatio Interpret Generali R INFORI	Multiple sclerosis Demyelinating conditions not ultimately diagnosed as MS nalyses events/adverse reactions ults ons tation isability MATION	31 31 32 32 32 33 36 36

LIST OF TABLES

		PAGE
Table 1	Codes and definitions used in the analyses	42
Table 2	Number of participants by vaccination status	45
Table 3	Cohort characteristics by vaccination status	46
Table 4	Crude and age-standardized rates (per 100,000 population) of incident multiple sclerosis during the period of one year following index date by vaccination status	50
Table 5	Crude and age-standardized rates (per 100,000 PY) of incident multiple sclerosis during anytime following index date by vaccination status	51
Table 6	Crude and age-standardized rates (per 100,000 population) of incident demyelinating conditions not ultimately diagnosed as multiple sclerosis during the period of one year following index date by vaccination status	51
Table 7	Crude and age-standardized rates (per 100,000 PY) of incident demyelinating conditions not ultimately diagnosed as multiple sclerosis anytime following index date by vaccination status	52
Table 8	Effect of H1N1/TIV vaccination on occurrence of incident multiple sclerosis during the period of one year following index date	53
Table 9	Effect of H1N1/TIV vaccination on occurrence of incident multiple sclerosis during anytime following index date	53
Table 10	Effect of H1N1/TIV vaccination on occurrence of incident demyelinating conditions, which do not ultimately lead to multiple sclerosis, during the period of one year following index date	54
Table 11	Effect of H1N1/TIV vaccination on occurrence of incident demyelinating conditions, which do not ultimately lead to multiple sclerosis, during anytime following index date	54
Table 12	Effect of H1N1/TIV vaccination on occurrence of incident multiple sclerosis during the period of one year following index date stratified by age groups	55
Table 13	Effect of H1N1/TIV vaccination on occurrence of incident multiple sclerosis during anytime following index date stratified by age groups	56
Table 14	Effect of H1N1/TIV vaccination on occurrence of incident multiple sclerosis during the period of one year following index date stratified by status of immunosuppressed conditions	57

	• • · · · · · · · · · · · · · · · · · ·
	200405 (EPI-FLU H1N1-014 VS)
	Report Final Version 2
Table 15	Effect of H1N1/TIV vaccination on occurrence of incident multiple sclerosis during anytime following index date stratified by status
	of immunosuppressed conditions58

200405 (EPI-FLU H1N1-014 VS) Report Final Version 2

LIST OF FIGURES

		PAGE
Figure 1	Distribution of PS for vaccinated and unvaccinated subjects in a	
	random sample of the study population	29

200405 (EPI-FLU H1N1-014 VS) Report Final Version 2

LIST OF ANNEXES

		PAGE
Annex 1	List of stand-alone documents	59
Annex 2	Trademarks	59
Annex 3	Study report revision history	60
Annex 4	Report sign-off	61

1. ABSTRACT

Title

An observational retrospective database analysis to estimate the risk of multiple sclerosis (MS) following vaccination with *Arepanrix* in Manitoba, Canada.

Date of the abstract: 27 April 2016

Main author: Dr PPD

Keywords

Post-authorisation safety study (PASS), *Arepanrix*, H1N1, multiple sclerosis, demyelinating conditions, Manitoba.

Rationale and background

Few observational studies have explored the risk of MS following immunisation with 2009 pandemic H1N1 influenza vaccines. An observational cohort study of adverse events of special interest following vaccination with *Pandemrix* found an increased risk of MS, potentially due to study limitations. This signal lead to further investigating the association between AS03-adjuvanted H1N1 vaccines and occurrence of MS.

Research question and objectives

To assess whether administration of *Arepanrix* was associated with an increased risk of incident MS and "other demyelinating conditions not ultimately leading to a MS diagnosis" in Manitoba, Canada.

Study design

Retrospective, propensity score (PS)-matched cohort study.

Study period

01 October 2009 - 31 December 2012.

Settings

Population-based analysis using de-identified records obtained by linking the electronic database of the Manitoba Immunization Monitoring System (MIMS) with the hospital, physician and prescription claims databases of Manitoba Health (MH).

Subjects and study size

The study population included adults and children above 6 months of age at the time of vaccination, residing in Manitoba and registered with MH during the study period. A vaccinated cohort (N=485,941) comprising all individuals with a MIMS record of H1N1 and/or seasonal influenza vaccination during the influenza season 2009/2010 was

200405 (EPI-FLU H1N1-014 VS) Report Final Version 2

matched on age, gender, place of residence and high-dimensional PS to an unvaccinated cohort comprising individuals registered with MH during the study period but with no MIMS record for H1N1 and seasonal influenza vaccination during the same season. A total of 267,539 subjects (55% of the vaccinated cohort) received *Arepanrix* and another 61,239 (13%) received it concomitantly with a trivalent inactivated seasonal influenza vaccine (TIV).

Variables and data sources

The primary endpoint was the occurrence of MS during the one-year period following administration of *Arepanrix* among the exposed cohort and during an equivalent time period in the unexposed cohort. Data sources consisted of the MIMS, Manitoba Health Population Registry, Drug Program Information Network, Hospital Abstract Database, and the Medical Services database. PS was calculated using logistic regression models that included demographic characteristics, medical history (comorbidities, immune status, vaccine indication, receipt of other vaccines or medications and frequency of healthcare contacts), pregnancy status, pre-existing conditions, and seasonal influenza vaccination.

Results

In the main analysis, the Hazard Ratio (HR) for the association between *Arepanrix* and incident MS was 0.9 (95% Confidence Interval [CI], 0.6-1.4) during the first year of follow-up. Similar estimates were obtained when measured over the entire follow-up period (HR 1.0 [0.8-1.4]) and with further adjustment for receipt of a TIV (HR 0.9 [0.6-1.5] and 1.1 [0.8-1.5], one year and anytime following index date, respectively). In agestratified analyses limited by small numbers, a non-statistically significant increased risk of MS in the 25-49 age group in the first year of follow-up (HR 1.5 [0.8-2.7]) was noted. Hazard ratios for the association between *Arepanrix* and incident demyelinating conditions not ultimately diagnosed as MS were about 0.5 in all analyses.

Discussion

Because of its population-based design and the availability of accurate automated records, this analysis is less susceptible to selection bias and differential misclassification of exposures and outcomes. The availability of a vaccination registry reduced vaccine use measurement errors. The use of validated algorithms limited the risk of misclassification of outcome. One limitation is the lack of information on lifestyle and environmental risk factors for MS, which was addressed by matching on age, gender, place of residence (proxy for ethnicity) and PS, which was calculated using more than 400 covariates. The vaccinated and unvaccinated cohorts were comparable at baseline, indicating a reasonable performance of the matching procedure to minimize differences in potential confounders between the *Arepanrix* group and the reference (unvaccinated) group. Finally, the large sample size permitted the calculation of reasonably precise estimates, although in some subgroup analyses, precision was limited by small numbers.

Data of this study are consistent with existing research on the association between influenza vaccination (seasonal and pandemic) and MS. Overall, the range of risk estimates across analyses suggests no evidence of an association between vaccination

200405 (EPI-FLU H1N1-014 VS) Report Final Version 2

with A*repanrix* and the incidence of MS or other central nervous system demyelinating conditions not ultimately diagnosed as MS.

Marketing Authorisation Holder for the vaccine under study

GlaxoSmithKline Biologicals Rue de l'Institut 89, 1330 Rixensart, Belgium

Names and affiliations of principal investigators

Principal Investigator:

 Salah Mahmud, Associate Professor of Community Health Sciences, Canada Research Chair in Pharmaco-epidemiology and Vaccine Evaluation, University of Manitoba

Co-investigator:

 Ruth Ann Marrie, Professor of Medicine & Community Health Sciences, University of Manitoba, and Director of the Multiple Sclerosis Clinic, Winnipeg Health Region, Manitoba

2. LIST OF ABBREVIATIONS

AEFI Adverse Events Following Immunization

AESI Adverse Events of Special Interest

AIDS Acquired Immune Deficiency Syndrome

ARR Adjusted Rate Ratio

AS03 Adjuvant System 03

ATC Anatomical Therapeutic Chemical

CI Confidence Interval

CNS Central Nervous System

DPIN Drug Program Information Network

EMA European Medicines Agency

ERB Ethical Review Board

EU PAS European Union Post-Authorisation Studies

GSK GlaxoSmithKline

GPP Guidelines for Good Pharmacoepidemiology Practices

H1N1 Hemagglutinin 1 Neurominidase 1

HIPC Health Information Privacy Committee

HR Hazard Ratio

hd-PS high-dimensional Propensity Score

HIV Human Immunodeficiency Virus

ICD International Classification of Diseases

ICD-9-CM International Classification of Diseases, Ninth Revision, Clinical

Modification

ICD-10-CA International Classification of Diseases, Tenth Revision, Canadian

Adaptation

MCHP Manitoba Centre for Health Policy

200405 (EPI-FLU H1N1-014 VS) Report Final Version 2

MH Manitoba Health

MHPR Manitoba Health Population Registry

MIMS Manitoba Immunization Monitoring System

MS Multiple Sclerosis

NPV Negative Predictive Value

PASS Post Authorization Safety Study

PI Principal Investigator

PPV Positive Predictive Value

PS Propensity Score

Q1 First Quartile

Q3 Third Quartile

SAS Statistical Analysis System

TIV Trivalent Inactivated seasonal influenza Vaccine

US United States (of America)

WHO World Health Organisation

3. ETHICS

3.1. Independent Ethics Committee or Institutional Review Board

The study protocol and research agreements were reviewed and approved by the Health Ethics Research Board of the University of Manitoba and the Health Information Privacy Committee of Manitoba Health (MH).

3.2. Ethical conduct of the study

This study was conducted in accordance with Good Pharmacovigilance Practices (GPP) and all applicable regulatory requirements, including the Declaration of Helsinki.

Access to data was subject to approval by Ethics Review Board of the University of Manitoba and by the Health Information Privacy Committee of MH.

3.3. Subject information and consent

No patient informed consent was obtained. The patient information in the database utilized is fully anonymized and the research team was not able to make a link between the data and specific individuals. None of the subjects were contacted.

4. INVESTIGATORS

Principle Investigator:

• Salah Mahmud, Associate Professor of Community Health Sciences, University of Manitoba.

Co-investigator:

 Ruth Ann Marrie, Professor of Medicine & Community Health Sciences, University of Manitoba.

5. OTHER RESPONSIBLE PARTIES

The present study was initiated following a regulatory commitment from the European Medicines Agency (EMA) to GlaxoSmithKline (GSK) Biologicals. GSK Biologicals has the responsibility for delivering the study report to EMA as per this commitment, and to ensure compliance with the EMA "Guidance for the format and content of the protocol of non-interventional post-authorisation safety studies" (EMA/623947/2012). The protocol and report were developed in a collaborative manner between GSK Biologicals and the Principal Investigator (PI), Dr. Salah Mahmud.

As per the Manitoba Centre for Health Policy (MCHP) Guidelines for Public and Private Sponsorship of Research Projects [MCHP, 2011], the PI was responsible for obtaining all necessary study approvals; overall conduct of the study; he is also responsible for

publishing the results in the searchable, peer-reviewed scientific literature. A protocol summary, including the anticipated timing for posting and submission of the results for publication, was posted on the EU PAS register (register # ENCEPP/SDPP/6818), as required by the EMA, and on other publicly available registers (ClinicalTrials.gov # NCT02367222).

6. MILESTONES

Milestones	Planned date	Actual date	Comments
Ethical approvals (from ERB, HIPC and MCHP)	Not applicable	JAN to MAY- 14	Approvals based on Version 1.0 of the protocol dated 19-SEPT-13
Final protocol submitted to EMA	Not applicable	12-MAY-14	Final protocol version dated 05-MAY-14
Registration in the EU PAS Register	Not applicable	01-OCT-14	Register no. ENCEPP/SDPP/6818
Start of data collection	30-SEPT-14	01-JUN-14	Here data collection is gaining access to the MH data repository, as the data is pre-collected
End of data collection	30-NOV-14	30-JUL-14	None
Statistical analysis complete	30-APR-15	30-OCT-15	Includes the process of creation of PS, matching, and generation of variables, in addition to actual analysis
Final report of study results	30-JUN-15	07-DEC-15	Report version updated on 27-APR-2016

7. RATIONALE AND BACKGROUND

7.1. Background

Multiple sclerosis (MS) is a chronic, progressively disabling disease of the Central Nervous System (CNS), estimated to affect more than 2.5 million persons worldwide [Dean, 1994]. Canada has among the highest prevalence of MS in the world, with more than 90,000 individuals affected [Beck, 2005; Gilmour and Hofmann, 2010]. It is the most common non-traumatic cause of disability in young adults, and adversely affects employment, social relationships, and quality of life [Nortvedt, 1999; Rao, 1991]. The societal costs of MS exceed those for stroke or Alzheimer's disease. Thus, the burden of MS is substantial for affected individuals and society.

Despite many studies, the aetiology of MS remains unknown [Marrie, 2004]. MS is likely caused by complex interactions between genetic and environmental factors. Putative risk factors that have been commonly studied include infection, vaccinations, stress, occupation, climate, and diet [Marrie, 2004]. Infection has been a putative etiologic agent of particular interest although there has been no reproducible evidence of a transmissible MS agent [Cosby, 1989; Haase, 1981; Hammerschlag, 2000]. The biological plausibility of Epstein-Barr virus as an etiologic factor is increasing, however, suggesting that infectious agents may initiate or perpetuate the disease process.

Similarly, vaccinations have also been considered as etiologic factors for MS. A series of case reports in France raised particular concern about demyelinating events developing after hepatitis B vaccination [DeStefano, 2003]. Ascherio and colleagues conducted a

200405 (EPI-FLU H1N1-014 VS) Report Final Version 2

nested case-control study with data from the Nurses Health Studies in which 192 women with MS were matched to 645 controls. The odds ratio of MS associated with hepatitis B vaccination occurring any time before disease onset was 0.9 (95% Confidence Interval (CI) 0.5–1.6) [Ascherio, 2001]. Case-control and cohort studies have been consistent in showing no association between other childhood vaccinations (measles, mumps, rubella) and MS [Bansil, 1990; Casetta, 1994; Currier, 1996; Zorzon, 2003]. Generally the bulk of scientific evidence does not support an increased risk of developing MS with vaccination perhaps with the exception of the yellow fever vaccine [Farez, 2011].

However, very few published studies have evaluated the association between 2009 pandemic H1N1 vaccination and the risk of developing MS. Vrethem *et al.* reported on a previously healthy young man who developed severe narcolepsy and MS within two months of receiving *Pandemrix* [Vrethem, 2012]. *Pandemrix*, and its Canadian-made equivalent *Arepanrix*, are AS03-adjuvanted split virion pandemic influenza H1N1 vaccines. A large retrospective Swedish record-linkage study reported increased risk of paraesthesia, but not of diagnosed MS, among persons vaccinated with *Pandemrix* [Bardage, 2011; Persson, 2014]. However, the study was limited by the use of non-validated algorithms for the identification of MS from administrative databases and by the inability to distinguish between prevalent and incident cases. Thus, the effect of H1N1 vaccination on MS remains uncertain.

The first confirmed case of pandemic H1N1 infection in the Canadian province of Manitoba was detected on May 3, 2009 [Thompson, 2011]. Like elsewhere in the Northern hemisphere, there were two epidemic waves; one between mid-May and the end of June 2009, and the other during the 2009/10 influenza season, which occurred predominantly between October and December of 2009 [Thompson, 2011; Zarychanski, 2010]. Mass immunization against pandemic H1N1 commenced October 26th 2010 using primarily large-scale vaccination clinics led by public health teams and lasted approximately 8 weeks. Initially, GSK's Canadian-manufactured AS03-adjuvanted 2009 pandemic H1N1 influenza vaccine *Arepanrix* was used to vaccinate adults and children over 6 months of age. Later on, two unadjuvanted pandemic H1N1 vaccines, from CSL Limited and GSK, were offered to pregnant women and children over 10 years of age; however, *Arepanrix* was the only adjuvanted vaccine used in Canada. Trivalent inactivated seasonal influenza vaccine (TIV) were administered as part of the annual influenza immunization program. The live attenuated influenza vaccine was not available in Manitoba during the 2009–2010 season [Mahmud, 2012].

All vaccines were offered free of charge, but limited vaccine supply at the start of the campaign necessitated the development of priority groups for early vaccination. The initial priority group for the H1N1 vaccine in Manitoba included health care workers, Aboriginal persons, pregnant women, children 6-60 months-old, individuals under 65 years of age with chronic medical conditions (including MS), immunocompromised individuals and residents of remote communities [Mahmud, 2011]. On November 18, 2009 the Pandemic H1N1 vaccines were made available to the whole population [Mahmud, 2011].

7.2. Rationale for the study

As outlined above, a limited number of observational studies have explored the risk of MS following pandemic H1N1 influenza vaccination. In most studies, no increased risk was identified. A GSK-supported, observational cohort study of individuals vaccinated with *Pandemrix* as part of the national 2009 H1N1 pandemic immunisation campaign in Sweden, measured incidence rates of Adverse Events of Special Interest (AESIs): anaphylaxis, Bell's palsy, convulsion, demyelination, encephalitis, Guillain-Barré Syndrome, neuritis, any influenza, vasculitis, convulsions in epileptics, autoimmune hepatitis, and MS. For MS, the standardised incidence ratio was significantly increased, which might have been due to the limitations of the study, including potential selection bias and lack of control for residual confounding [unpublished report]. This signal triggered the need to further investigate the potential association between AS03-adjuvanted H1N1 vaccines and the occurrence of MS.

Investigating the signal in the Manitoba settings had the following advantages:

- The burden of MS in Canada is substantial [Beck, 2005; Evans et al, 2013], and the province of Manitoba has one of the highest prevalence of MS with approximately 100 new cases each year [R.A. Marrie, personal communication], making this region suitable to address the research question;
- This study allowed obtaining complementary data on the safety of *Arepanrix*, an AS03-adjuvanted split virion pandemic influenza H1N1 vaccine similar to *Pandemrix*;
- In the EMA assessment of the draft report of the GSK-supported safety study on the risk of AESIs following vaccination with *Arepanrix* in Manitoba, it was stated that "No strong signal was observed for demyelination with Arepanrix; indeed higher risk estimates were observed for seasonal trivalent influenza vaccines. However, risk estimates in the subgroup analysis (individuals with autoimmune diseases and those aged 18-64 years) were elevated, with lower 95% confidence levels >1". This study further explored this matter using a more robust design (propensity score [PS] matching of the cohorts) and a validated case definition, to allow the identification of incident MS cases.

In summary, the aim of the study was to assess whether administration of *Arepanrix* was associated with an increased risk of incident MS in Manitoba, Canada. The availability of a province-wide population-based immunization registry and other linked health care administrative databases provided a unique opportunity to perform this evaluation.

8. RESEARCH QUESTION AND OBJECTIVES

8.1. Primary objective

• To assess whether administration of *Arepanrix* was associated with an increased risk of incident MS.

8.2. Secondary objective

• To assess whether administration of *Arepanrix* was associated with an increased risk of demyelinating events which do not ultimately lead to a diagnosis of MS (i.e., never have a diagnostic claim for MS), including optic neuritis.

8.3. Exploratory objective

 To assess whether administration of unadjuvanted pandemic H1N1 influenza vaccines was associated with an increased risk of incident MS.

9. AMENDMENTS AND UPDATES

None.

10. RESEARCH METHODS

10.1. Study design

This was a retrospective analysis of population-based cohorts of subjects, whose vaccination status and health events before and after vaccination, were recorded in various MH administrative databases. A PS matched cohort analysis was conducted using de-identified records obtained by linking the electronic database of the Manitoba Immunization Monitoring System (MIMS) with the hospital, physician and prescription claims databases of MH.

10.1.1. Rationale for study design

The use of automated administrative databases allows access to a large population of vaccinated individuals. A cohort design using PS matching was adopted to increase comparability between the exposed and unexposed cohorts on known potential confounders.

10.2. Settings

10.2.1. Study period

The study period spanned from 01 October 2009 (beginning of the H1N1 influenza mass vaccination campaign in Canada) to 31 December 2012 (to allow sufficient follow-up time for cases to have a confirmatory diagnosis given the natural history of MS).

10.2.2. Data collected

10.2.2.1. Subjects characteristics

Demographic characteristics such as age, sex, area of residence, socio-economic status were collected. Medical history such as comorbidity, immune status, vaccine indication (e.g., pregnancy, cardiovascular, pulmonary or renal diseases, etc.), receipt of other vaccines or medications and frequency of healthcare contacts was obtained.

Information on pregnancy status and pre-existing conditions was obtained from the Hospital Separation and Physician Claims databases. Previously validated algorithms, based on the frequency of certain International Classification of Diseases (ICD) codes, were used to identify various chronic diseases (Table 1) [Elixhauser, 1998; Lix, 2006]. Immunosuppression was defined as having a diagnosis of Human Immunodeficiency Virus / Acquired Immune Deficiency Syndrome (HIV / AIDS), other immune deficiency disorders or cancer (other than non-melanoma skin cancer), or receiving prescriptions for immunosuppressive drugs (Table 1) [Dublin, 2009]. Auto-immune diseases were defined as ≥1 admission (ICD-10 codes) or ≥2 physician claims (ICD-9 codes) (Table 1). Information on the use of immunosuppressants was obtained from the Drug Program Information Network (DPIN). Pregnancy status was determined from the same databases using disease and tariff codes for different conditions and procedures indicative of ongoing pregnancy or the completion of pregnancy (Table 1) [Hardy, 2004].

10.2.2.2. History of pandemic H1N1 and seasonal influenza vaccines

Information on the receipt of all vaccines, including the pandemic H1N1 and seasonal influenza vaccines, was obtained from MIMS (refer to Table 1 and Section 10.5.2).

10.2.2.3. Case definitions

Multiple Sclerosis

We identified incident cases of diagnosed MS among all included individuals by record linkage with the hospital and physician claims databases and DPIN using a validated algorithm developed by Dr. Marrie, a co-investigator and co-author of this report [Marrie, 2010] (Table 1).

200405 (EPI-FLU H1N1-014 VS) Report Final Version 2

In 2008, Dr. Marrie and colleagues used Manitoba administrative claims data to identify persons with demyelinating disease using ICD-9 and ICD-10 codes and prescription claims [Marrie, 2010]. To validate the algorithm, questionnaires were mailed to 2000 randomly selected persons with an encounter for demyelinating disease, requesting permission for medical records review. Diagnoses abstracted from medical records were used as the gold standard to evaluate candidate case definitions using administrative data. From 1984-1997, cases of MS using claims data were defined as persons with ≥ 7 hospital or physician claims for MS. From 1998 onward, cases were defined as persons with ≥ 3 hospital, physician or prescription claims for MS. As compared to medical records, this definition had a Positive Predictive Value (PPV) of 80.5% and Negative Predictive Value (NPV) of 75.5% in persons with ≥ 1 claim for demyelinating disease; the NPV is much higher at the population level where more than 98% of the population has no claims for demyelinating disease. The performance of this case definition was recently assessed in Nova Scotia [Marrie et al, 2014]. Applying the case definition of ≥ 3 hospital or physician claims for MS (prescription claims were not available) and comparing it to MS diagnoses from the Dalhousie MS Research Unit database, the PPV was 93% (95%) CI: 92-94%).

In the present analysis, we used the validated Manitoba case definition to define a case of MS as a person with ≥ 3 hospital, physician or prescription claims for MS (see Table 1 for details). We considered a case *incident* if there were no physician or hospitalization records indicating a diagnosis of any demyelinating condition between 1971 (the earliest year for which information was available from the electronic databases) and the index date. The date of diagnosis of MS (outcome date) is the date of the first medical contact for any of the MS diagnostic codes.

Other Demvelinating Diseases

Demyelinating events not ultimately leading to MS diagnosis, including optic neuritis, were defined by ≥ 1 hospitalizations or ≥ 2 physician claims at least 30 days apart with no subsequent MS diagnosis (see Table 1 for ICD9/10 codes).

10.3. Subjects

10.3.1. Study population

The study population was comprised of adults and children above 6 months of age (at the time of vaccination) who normally resided in Manitoba and had been registered with MH for at least 1 year before the enrolment period (see Section 10.2.1). To ensure sufficient historical data, all participants were required to have at least one year of insurance coverage before the study period.

10.3.2. Inclusion criteria

The entire population of Manitoba was considered for inclusion.

10.3.3. Exclusion criteria

- Individuals ≤ 6 months of age;
- Having less than one year of insurance coverage before the enrolment period;
- Not registered with MH during the enrolment period;
- Physician or hospitalization records indicating a diagnosis of any demyelinating condition between 1971 (earliest year for which information was available) and the index date.

10.3.4. Cohort identification and creation

The **vaccinated cohort** was assembled by identifying all individuals who had a MIMS record indicating receipt of pandemic H1N1 influenza or TIV/seasonal influenza vaccines (see Table 1 for tariff codes that were used to identify these records) during the **enrolment period**, i.e., between September 15th, 2009, and March 15th, 2010, spanning the period when almost all H1N1 vaccines and TIVs were administered. Individuals who were registered with MH during the study period but did not have MIMS records indicating receipt of the H1N1 or seasonal influenza vaccines constituted the **unvaccinated cohort**.

For additional clarity:

- **Vaccinated cohort:** all individuals with MIMS record of H1N1 and/or seasonal influenza vaccination during the influenza season 2009/2010 (September 15th, 2009 to March 15th, 2010).
- **Unvaccinated cohort:** registered with MH during the study period but with no MIMS record for H1N1 and seasonal influenza vaccination during the influenza season 2009/2010 (September 15th, 2009 to March 15th, 2010).

Based on PSs (see details of the PS model in Section 10.9.2.7.1), each vaccinated individual was matched to an individual who did not receive any influenza vaccines during the study period.

The **index date** was defined as the date of vaccination for vaccinated individuals, and the date of vaccination of the matched vaccinated individual for unvaccinated individuals. For the unvaccinated cohort, the index date was between September 15th, 2009, and March 15th, 2010.

10.4. Variables

10.4.1. Primary endpoint

 Occurrence of MS during the period of one year following administration of *Arepanrix* among an exposed cohort (see Section 10.3.4) and during an equivalent time period in the unexposed cohort.

10.4.2. Secondary endpoints

- Occurrence of MS from administration of *Arepanrix* until 31 December 2012, among an exposed cohort (see Section 10.3.4) and during an equivalent time period in the unexposed cohort.
- Occurrence of demyelinating events which do not ultimately lead to a diagnosis of MS (i.e., never have a diagnostic claim for MS) during the period of one year following administration of *Arepanrix* among an exposed cohort (see Section 10.3.4) and during an equivalent time period in the unexposed cohort such as optic neuritis, acute transverse myelitis, demyelinating disease of CNS unspecified, other acute disseminated demyelination, and neuromyelitis optica.
- Occurrence of demyelinating events which do not ultimately lead to a diagnosis of MS (i.e., never have a diagnostic claim for MS) from administration of *Arepanrix* until 31 December 2012, among an exposed cohort (see Section10.3.4) and during an equivalent time period in the unexposed cohort, such as optic neuritis, acute transverse myelitis, demyelinating disease of CNS unspecified, other acute disseminated demyelination, and neuromyelitis optica.

10.4.3. Exploratory endpoint

 Occurrence of MS during the period of one year following administration of unadjuvanted pandemic H1N1 influenza vaccines among an exposed cohort and during an equivalent time period in the unexposed cohort.

10.5. Data sources

10.5.1. Manitoba Health administrative databases

MH is the publicly funded health insurance agency providing comprehensive health insurance, including coverage for hospital and outpatient physician services, to the province's 1.2 million residents. Coverage is universal (there is no eligibility distinction based on age or income) and participation rates are very high (> 99%) [Singh, 2009]. Only the Royal Canadian Mounted Police and military personnel, whose health benefits are fully covered by the federal government, are not included [Roos, 1993].

For administrative purposes, MH maintains several centralized electronic databases that are linkable using a unique personal health identification number. The completeness and accuracy of the Manitoba administrative database are well established, [Humphries, 2000; Roos, 1993; Young, 1997] and these databases have been used extensively in studies of post-marketing surveillance of various vaccines and drugs [Fedson, 1993; Mahmud, 2011; Mahmud, 2012; Roberts, 1994; Singh, 2009].

10.5.2. Manitoba Immunization Monitoring System

Information on the receipt of all vaccines, including pandemic H1N1 and seasonal influenza vaccines were obtained from MIMS, the population-based province-wide registry recording all immunizations administered to Manitoba residents since 1988

200405 (EPI-FLU H1N1-014 VS) Report Final Version 2

[Roberts, 1996]. Information, including vaccine type and date of immunization, was captured for each immunization event either through direct data entry for vaccines administered by public health staff (who administered the majority of H1N1 vaccines during the pandemic) or using physician claims data for vaccines administered by physicians [Roberts, 1994]. Estimates of the completeness and accuracy of the recorded vaccination information were high [Roberts, 1994]. Vaccination status in the MIMS database did not include information on brand/manufacturer; however, data on the adjuvanted nature of pandemic influenza vaccines that were used in Manitoba were available.

10.5.3. Manitoba Health Population Registry (MHPR)

Eligibility for inclusion in the analysis was determined using the MHPR, a continuously updated registry that stores basic demographic information (e.g., date of birth and sex) on all insured Manitobans, and gathered information on dates and reasons for the initiation and termination of health care coverage (e.g., birth, migration in or out of province and death), and on changes in address and marital status of the insured individuals.

10.5.4. Drug Program Information Network

Information on MS and other relevant diseases and health conditions (see Section 10.2.2.3) was obtained from the hospital and physician claims databases and from the database of the DPIN. The DPIN, in operation since 1995, records all prescription drugs dispensed to Manitoba residents [Kozyrskyj, 1998]. The DPIN database captures data from pharmacy claims for formulary drugs dispensed to all Manitobans even those without prescription drug coverage. Because information is submitted electronically at the "point-of-sale", the accuracy of the recorded prescription information is excellent [Kozyrskyj, 1998].

10.5.5. Hospital Abstract Database

Since 1971, the Hospital Abstracts database record virtually all services provided by hospitals in the province, including admissions and day surgeries [Roos, 1993]. Data collected comprises demographic as well as diagnosis and treatment information including primary diagnosis and service or procedure codes, coded using the ICD, Ninth Revision, Clinical Modification (ICD-9-CM) before April, 2004, and the ICD-10-CA, (Canadian adaptation of the ICD-10 [WHO, 1993]) and the Canadian Classification of Health Interventions [Canadian Institute for Health Information, 2006] afterwards.

10.5.6. The Medical Services database

The Medical Services database, also in operation since 1971, collects similar information, based on physician fee-for-service or shadow billing, on services provided by physicians in offices, hospitals and outpatient departments across the province [Roos, 1993]. Each billing record includes a tariff code and a 3-digit ICD-9 code which identifies the principal diagnosis or main reason for the visit. This database is limited by the lack of more specific ICD codes (4th and 5th digits).

10.6. Bias

Refer to sections 10.9.2.7.1 and 12.2 for a description of potential sources of bias and limitations of the research methods.

10.7. Study size

Based on 400,000 vaccinated individuals (and 400,000 non-vaccinated individuals) and assuming a MS incidence rate of 20/100,000 among non-vaccinated individuals, a conservative assumption given that MS rates among younger adults in Manitoba ranged from 29/100,000 in the 35-39 age-group to 19/100,000 in the 50-54 age-group from 1998 to 2006 [Marrie et al, 2010], the matched cohort analysis was estimated to have >99% power to detect a doubling of the risk (rate ratio [RR]=2) and 81% power to detect 50% increase in risk (RR=1.5) [OpenEpi, 2013; Fleiss, 2003; Kelsey, 1996]. A two-sided test at alpha=0.05 was assumed in all calculations.

10.8. Data transformation

10.8.1. Data management

The final database consisted of data extracted from the databases described in Section 10.5. Record linkage was performed by the employees of the MCHP where these databases are housed. The analytic database was accessed and analysed within the confines of the MCHP's secure computing environment. Data analysis was conducted at the Vaccine and Drug Evaluation Centre using secure terminals directly connected to the MCHP's secure computing environment.

10.9. Statistical methods

10.9.1. Main summary measures

Please refer to section 10.9.2 for a detailed description of each method and corresponding measures (where applicable).

10.9.2. Main statistical methods

10.9.2.1. Hypotheses

Null hypothesis (H0): the incidence of MS in the exposed cohort is equal to the incidence in the non-exposed cohort.

Alternative hypothesis (H1): the incidence of MS in the exposed cohort is not equal to the incidence in the non-exposed cohort.

The same hypotheses were tested for the secondary endpoint (demyelinating events).

10.9.2.2. Analysis Population

The study population for the cohort design comprised all enrolled exposed and unexposed subjects that satisfied the inclusion criteria.

10.9.2.3. Subject disposition

Subject disposition was summarised by computing the number of subjects by type of vaccine received (Table 2; see also Section 10.9.2.4).

10.9.2.4. Demographic and baseline characteristics

Demographic and baseline characteristics of all enrolled subjects (age at enrolment, other vaccination during the previous year, medical history, healthcare resource utilization during the previous year, etc.) were summarized per cohort and overall, using descriptive statistics (Table 3). Frequency tables were generated for categorical variables. Mean, standard error, median, Q1, Q3, and range were provided for continuous variables.

10.9.2.5. Analysis of primary endpoint

The primary analysis compared the incidence rates of MS between the exposed cohort and the unexposed cohort in the year following the index date. Person-time was defined as the period between the index date (see Section 10.3.4) and the earliest of the following events:

- Diagnosis of the outcome of interest:
- Death or loss to follow-up;
- Termination of insurance coverage;
- Receipt of H1N1 vaccine or TIV for the unexposed cohort;
- Receipt of any other vaccine following the index date;
- End of the first year following the index date.

Incidence rates for MS were calculated by dividing the number of cases by person-time. Both crude and age-adjusted incidence rates were calculated. In addition, both crude and age-adjusted incidence rate ratio were calculated.

The corresponding multivariate analysis consisted of Cox regression models (See section 10.9.2.7.2 for details).

10.9.2.6. Analysis of secondary endpoints

The analysis of the incidence of MS until 31 December 2012 used the same statistical approach as the primary analysis.

200405 (EPI-FLU H1N1-014 VS) Report Final Version 2

Exposed person-time was defined as the period between the index date (see Section 10.3.4) and the earliest of the following events:

- Diagnosis of the outcome of interest;
- Death or loss to follow-up;
- Termination of insurance coverage;
- Receipt of H1N1 vaccine or TIV for the unexposed cohort;
- End of study period (31 December 2012).

The secondary analysis also compared the incidence rates of demyelinating events which did not ultimately lead to a diagnosis of MS (including optic neuritis, acute transverse myelitis, demyelinating disease of CNS unspecified, other acute disseminated demyelination, and neuromyelitis optica), between the exposed cohort and the unexposed cohort.

Exploratory analyses were conducted to assess the association between unadjuvanted pandemic influenza vaccine(s) and incidence of MS. These analyses were not considered as confirmatory.

10.9.2.7. Statistical models

10.9.2.7.1. Propensity score model

Due to lack of random assignment of treatments, estimates of treatment effects in observational studies could be biased because the treatment group and the control group might not be comparable with respect to the distribution of important disease (or outcome) predictors (confounders). PS methods are one approach to constructing more comparable groups by limiting comparisons to individuals who had the same propensity to receive the treatment [Rubin, 1997]. PS are defined as the conditional probability of receiving treatment given the value of a set of confounders, and can be estimated using logistic or probit regression models of the association between confounding covariates and the receipt of treatment [Rubin, 1997]. PS methods are especially suitable for postmarketing studies of drug and vaccine safety where the outcomes are typically rare, limiting the utility of conventional multivariate adjustment methods, but the treatment and confounders data are very rich.

We used the high-dimensional Propensity Score (hd-PS) algorithm [Schneeweiss et al, 2009], implemented as a Statistical Analysis System (SAS) macro downloadable from http://www.drugepi.org/dope-downloads/, to calculate a PS for each eligible participant indicating his or her probability of receiving the pandemic vaccine as derived from a logistic regression model that included the receipt of the pandemic vaccine as an dependent variable and more than 400 independent variables including demographic variables (e.g., age, sex, area of residence, socio-economic status), comorbidity and healthcare utilizations variables(e.g., records of admission or physician visits for most common conditions) and prescription drug and vaccine utilization variables.

200405 (EPI-FLU H1N1-014 VS) Report Final Version 2

We used a greedy matching algorithm to pair-match each vaccinated individual with a randomly selected unvaccinated individual with the closest PS. Because of the large sample size, sets of matched individuals were still heterogeneous with regard to age group, gender and area of residence. Consequently, we decided to also match on these variables. So, at the end our cohort was matched with respect to PS, age group, gender and area of residence.

10.9.2.7.2. Time-to-event model

Standard time-to-event (survival) analysis methods were used for most analyses. Time-to-event (onset of MS) was measured from the *index date* to the date of MS onset as defined by the first demyelinating disease code in hospital or physician claims. Individuals were censored on the date of loss to follow-up (e.g., due to death or immigration) or on the study end date (2 years following the index date). In addition, individual observations were censored on the date of any subsequent administration of a different vaccine because any MS cases identified afterwards might have been due to the more recently given vaccine. On the other hand, two vaccines given on the same day (typically, an H1N1 vaccine given concurrently with a TIV) were considered as a single episode. However, in analyses stratified by vaccine type, these episodes were grouped separately (labelled as the "concurrent H1N1/TIV" cohort), and the incidence of MS in this group was compared to that among individuals who received an H1N1 vaccine only (the "H1N1 alone" cohort) or a TIV only (the "TIV alone" cohort).

Cumulative incidence curves of MS were computed separately for each cohort (vaccinated and non-vaccinated) and sub-cohort ("concurrent H1N1/TIV", "H1N1 alone" and "TIV alone"). Numbers permitting, the "H1N1 alone" and ("concurrent H1N1/TIV", sub-cohort was further divided into those who received the adjuvanted H1N1 vaccine and those who received the unadjuvanted H1N1 vaccine.

Cox proportional hazard models, with stratification on the matched pairs, were used to estimate relative risks (hazards ratios) associated with the receipt of the H1N1 vaccine [Cummings, 2003]. Cox models assume that the effect of covariates is constant over time (proportional hazards assumption). We tested this assumption using graphical and formal methods as proposed by Therneau & Grambsch [Therneau, 2000]. If the hazards function was non-proportional over time, interaction terms between time and the appropriate covariates were included in the model. The possibility of effect modification with the receipt of the 2009/10 TIV was assessed, testing for interactions between H1N1 and TIV terms using a likelihood ratio test with a relatively liberal cut-off point for statistical significance (P <0.15).

10.9.2.8. Conduct of analysis

All the analyses were done on the final database.

10.9.3. Missing values

The analyses were based on data from the MH database system. Missing data was not substituted. As for any study using large healthcare databases, it cannot be excluded that some information is not recorded in the database.

10.9.4. Sensitivity analyses

The following subgroup analyses were performed:

• Separate analyses were performed for the following three age groups: ≤ 24 , 25-49 and ≥ 50 .

10.9.5. Amendments to the statistical analysis plan

 Analysis for subjects with a history of auto-immune disease other than MS was not conducted due to small numbers.

10.10. Quality control

Data management was performed in accordance with applicable standards and data cleaning procedures. The final study dataset was archived and stored on a secured, limited access, computer platform. The validation of the quality control of the statistical analysis was documented. The final study protocol and the final study report(s) were and will be archived by GSK on a Document management system based on the Documentum platform: Computer Aided Regulatory Submission.

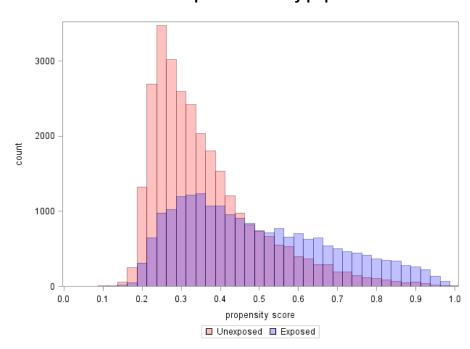
11. RESULTS

11.1. Participants

A total of 485,941 subjects having received one or more doses of the pandemic or seasonal vaccines during the enrolment period constituted the vaccinated cohort (Table 2). Of these, 278,131 (57%) received a pandemic vaccine only, 63,216 (13%) received both a pandemic and a 2009/2010 seasonal vaccine, and 144,594 (30%) received a seasonal vaccine only. In total, 341,347 persons (29% of the total study population) received one or more doses of the pandemic vaccine, which is comparable to overall Canadian data [Gilmour and Hofmann, 2010].

The large majority (96%) of those who received a pandemic vaccine received the adjuvanted vaccine (Arepanrix); 78.4% received it alone, whereas 18% received it in addition to a TIV (Table 2). About 4% of the pandemic vaccine recipients received an unadjuvanted pandemic vaccine (3% alone and about 1% concurrent with an TIV).

11.2. Descriptive data


Table 3 shows participant characteristics by vaccination status and type of vaccine received. As expected, children and younger adults (<35 years of age) dominated (54%)

the pandemic vaccine group, whereas older adults (55+) dominated (78%) the TIV group. Still 62,808 (18%) older adults received the pandemic vaccine. Similar impressions can be gleaned from analyses of birth cohorts with those born after 1994 representing a greater proportion of the pandemic vaccine group.

As a consequence of matching, the vaccinated and unvaccinated groups were quite similar with respect to their socio-demographic (birth season, gender, region of residence, and income) and most clinical characteristics. However, people with chronic illnesses (including cancer and diabetes) constituted a larger percentage of those who received the TIV. Overall, 30% of those who received the TIV had one or more chronic illness (Table 3) compared to 7% of those who received the pandemic vaccine alone and about 13% of those who did not receive any vaccine. As expected, there were more pregnant women in the vaccinated group. As a result of the above patterns, twice as many people in the TIV vaccinated group belonged to a group for which the TIV was recommended (according to recommendations of the Canadian National Advisory Committee on Immunization) compared to the unvaccinated group (76% compared to 33%). The gap was smaller for the pandemic vaccine where 54% of the pandemic vaccine group belonged to a high-priority group compared to 48% of the unvaccinated. The vaccinated were also more likely to have received a 2008/09 TIV and at least one pneumococcal vaccine.

Figure 1 shows the distribution of PS for vaccinated and unvaccinated subjects, based on a large random sample of the study population. As shown on the histogram, at each PS band there was an acceptable number of vaccinated and unvaccinated subjects, facilitating finding adequate matches. In other words, there was no situation where the vaccinated and unvaccinated curves did not overlap, highlighting no concern about shortage of suitable potential matches to vaccinated person.

Figure 1 Distribution of PS for vaccinated and unvaccinated subjects in a random sample of the study population

11.3. Outcome data

11.3.1. Multiple sclerosis

Table 4 shows the crude and age-standardized rates (per 100,000 PY) of incident MS during the period of one year following index date by vaccination status. By the end of the first year of follow-up, 106 cases were diagnosed among the unvaccinated, corresponding to an age-standardized rate (ASR) of 24.2 (20.1 – 28.3)/100,000 compared to 69 cases and ASR of 20.2 (15.4 – 24.9)/100,000 among the vaccinated cohort (age-Adjusted Rate Ratio [ARR] = 0.8 (0.3-2.2). Participants who received the pandemic vaccine had a slightly lower ASR at 17.7 (14.1–21.2)/100,000 with an ARR of 0.7 (0.3 – 1.7). Similar rates were observed for adjuvanted and unadjuvanted pandemic vaccine cohorts. The ASR was a bit higher among those who received the TIV alone, 36.8 (25.0 – 48.6)/100,000, with an ARR of 1.5 (0.3 – 6.8) compared to unvaccinated persons. The wide 95% CI indicates the lack of precision of these estimates due to small number of cases in the TIV alone cohort (N=14). No increase of risk was observed among those who received a TIV and pandemic vaccine concurrently.

The average rate of MS over the entire follow-up period (median of about 3 years) were about 20-30% lower than those observed during the first year of follow-up (Table 5). Regardless of vaccine type, ARRs calculated over this period were consistent with lack of an association between vaccine administration and MS. For instance, the ARR for receipt of pandemic vaccine alone was 0.9 (0.3-2.8).

11.3.2. Demyelinating conditions not ultimately diagnosed as MS

Table 6 shows the crude and age-standardized rates (per 100,000 PY) of incident demyelinating conditions not ultimately diagnosed as MS during the period of one year following index date by vaccination status. After 1 year of follow-up, 27 patients met the case definition among the unvaccinated, corresponding to an ASR of 6.9 (2.6 - 11.1)/100,000 compared to 17 cases and ASR of 4.7 (0.0 - 10.6)/100,000 among the vaccinated cohort. Participants who received the pandemic vaccine had an ASR of 5.6 (0.0 - 13.3)/100,000 with an ARR of 0.8 (0.1 - 10.6). No cases were observed among those who received the TIV.

The average rate of these conditions over the entire follow-up period (median of about 3 years) were about 20-30% lower than those observed during the first year of follow-up (Table 7). Generally, ARRs calculated over this period were consistent with lack of an association with vaccine administration except for those who received an unadjuvanted vaccine where the ASR was higher 7.4 (0.0 - 18.0)/100,000, but due to small number of cases (<6), the corresponding ARR (2.1) was very imprecise (0.1 - 39.9).

11.4. Main results

11.4.1. Multiple sclerosis

Table 8 shows estimates of Hazard Ratios (HRs) and 95% CIs of the association between incident MS and vaccine administration during the period of one year following index date by vaccination type. In a model adjusted for PS, age, gender, and area of residence (Model A), there was no evidence of an association with the receipt of any vaccine. The HR for the receipt of *Arepanrix* alone was 0.9 (0.6-1.4), with no change with further adjustment for receipt of a TIV (Model B). The estimates for adjuvanted and unadjuvanted vaccines were comparable. Similarly the receipt of TIV alone or concurrently with pandemic vaccine was not associated with MS diagnosis. Similar patterns were observed when disease occurrence was measured over the entire follow-up period (Table 9).

11.4.2. Demyelinating conditions not ultimately diagnosed as MS

Table 10 and Table 11 show the corresponding results for demyelinating conditions not ultimately diagnosed as MS. There was no evidence of an increased risk of these conditions with the receipt of any pandemic vaccine. The receipt of either TIV alone or concurrently with the adjuvanted pandemic vaccine (*Arepanrix*) was associated with a small increased point estimate (HR about 2) of these conditions and the association persisted after adjusting for receipt of the 08/09 TIV and when repeated for the entire study period. Although consistent, none of these associations were statistically significant or precise, given the small number of cases diagnosed among these groups.

11.5. Other analyses

Table 12 shows estimates of HRs and 95% CIs of the association between incident MS and vaccine administration during the period of one year following index date for 3 different age groups: <=24, 25-49 and 50+. Table 13 shows the corresponding results for the entire follow-up period. There was some evidence of a small increased risk of MS with the receipt of *Arepanrix* among 25-49 year-olds. In the first year of follow-up, the HR (95%CI) was estimated at 1.5 (0.8-2.7) and was slightly lower when measured over the entire study period (1.3 [0.8-2.0]). The results were not statistically significant due to small numbers. Similar findings were seen for the younger age group (Table 13) but not for the 50+ group.

Table 14 and Table 15 show risk estimates of the association between incident MS and vaccine administration during the period of one year following index date, and during any time following index date, respectively, stratified by immunosuppressed status. For the immunosuppressed category, models did not converge due to small numbers of MS events in this group; hence no risk estimates could be computed. There was no evidence of an association in non-immunosuppressed subjects.

11.6. Adverse events/adverse reactions

Individual medical records were not directly examined, and subject reports linked between databases were-de-identified prior to analysis. Therefore, individual case adverse event/adverse reaction reports were not generated.

12. DISCUSSION

12.1. Key results

We found no evidence of an association between vaccination with *Arepanrix* and the incidence of MS or that of other CNS demyelinating conditions that were not ultimately diagnosed as MS.

12.2. Limitations

Because of its population-based design and the availability of accurate automated records of hospitalization, physician utilization, vaccination and prescriptions, [Roberts, 1994] this study is less susceptible to selection bias (the whole population of Manitoba was eligible and available for inclusion in the study) and differential misclassification of exposures and outcomes often seen in observational epidemiologic studies where information on important variables is self-reported. The availability of detailed histories of vaccination, through the unique Manitoba Immunization Registry decreased recall bias and reduced vaccine use measurement errors (e.g., due to patient confusion about what vaccines were received).

While use of administrative databases to measure study variables minimizes the risk of differential misclassification (accuracy of documentation is unlikely to be related to receipt of the vaccine), it is still possible that these variables are measured with error due, for instance, to coding errors (e.g., using the wrong ICD code). In particular, the ascertainment of MS cases is likely incomplete. We used a validated algorithm with a high NPV (>98%; See Section 10.2.2.3), so it is unlikely that non-MS cases were misclassified as cases. On the other hand, under-ascertainment of MS is a distinct possibility given the relatively low sensitivity of the algorithm and the complexity of diagnosing MS. It is often assumed that this kind of misclassification is non-differential with respect to pH1N1 vaccination because knowledge of pH1N1 vaccination status is unlikely to have directly influenced the way MS was diagnosed or coded. If this assumption is correct, our relative risk estimates of the association with pH1N1 vaccination are accurate even though our absolute MS incidence rates are lower than they should have been. In a cohort study, non-differential misclassification of the outcome does not typically bias the relative risk estimates because it is akin to sampling the same percentage of the cases in each group. The incidence rate of MS among unvaccinated persons measured in this study was comparable to MS rates measured in similarly young populations in studies from Manitoba and elsewhere [Marrie et al, 2010; Kingwell et al, 2013]. So the magnitude of under-ascertainment is likely not significant.

200405 (EPI-FLU H1N1-014 VS) Report Final Version 2

If, on the other hand, the under-ascertainment of MS was differential, the direction of the error will depend on the nature of the relationship between H1N1 vaccination and the likelihood of MS diagnosis. It is possible that vaccinated individuals are more likely to be diagnosed with MS because receiving the vaccine may indicate better access to healthcare (unlikely in this case) or increased awareness or propensity to seek healthcare services. If that is the case, the benefits of the vaccine in preventing MS may have been masked by the higher rate of disease detection among the vaccinated. But, this kind of bias would not account for the lower risk of MS observed among vaccinated persons in this study.

Both environmental and genetic risk factors, and interactions thereof, could have confounded our analyses [Ascherio, 2012; Kakalacheva, 2011]. One limitation of the present study is the lack of information on lifestyle and environmental factors in our data sources. We attempted to adjust for these (largely unknown) factors by matching on age, gender, place of residence and PS. Matching on place of residence reduces the likelihood of confounding by ethnicity as ethnic minorities (First Nations or migrants) tend to cluster in communities even in large urban centres such as Winnipeg. Smoking information is not available in the Manitoba databases; however, the PS reduces confounding by measured (e.g., access to healthcare services) and unmeasured confounders (e.g., smoking) due to the inclusion of proxy conditions (e.g., smokingrelated diseases) in the calculation of the PS. As was described in the results section (Section 11.2), the vaccinated and unvaccinated cohorts were comparable at baseline in terms of demographics, clinical factors/existing morbidity and healthcare utilization factors indicating a reasonable performance of the matching procedure to minimize differences in potential confounders between the Arepanrix group and the reference (unvaccinated) group. Although there was still some heterogeneity between the various exposed cohorts with regards to age, gender, and area of residence after PS matching, this was mitigated by further matching on, as well as adjusting for these variables in the Cox models.

Because individuals within each matching pair had a similar probability of receiving the vaccine, relative risk estimates derived from the matched cohort analysis are estimated to be less biased with respect to the measured confounders. Residual confounding remains a possibility.

Finally, the relatively large sample size (Section 10.7) permitted the calculation of reasonably precise estimates. However, in some subgroup analyses (e.g., unadjuvanted vaccine), the precision of estimates were limited by small numbers.

12.3. Interpretation

Our findings are consistent with the bulk of scientific evidence in finding no indication that influenza vaccination is associated with an increased risk of MS.

Firstly, seasonal influenza vaccines have not been linked to MS risk. In a systematic review of both RCTs and observational studies that reported on the risk of MS following immunization, there were 4 studies with a total of 14,997 cases and 10,128 controls that reported on the association with influenza vaccination [Farez, 2011]. The pooled OR of

200405 (EPI-FLU H1N1-014 VS) Report Final Version 2

developing MS following influenza immunization was 0.97 (95%CI 0.77-1.23) with little evidence of heterogeneity (p= 0.368).

Data on the association with pandemic vaccination is quite limited as very few studies specifically examined the association between the pandemic vaccine and the risk of occurrence of MS. In published (mostly manufacturer-sponsored RCTs) conducted during the pandemic, there were no reports of clinically significant adverse events of the different pandemic vaccine formulations [Manzoli et al, 2011]. Generally, higher frequency of mild to moderate adverse effects was noted with use of adjuvanted vaccines, but there was no evidence of increased risk of serious adverse events such as MS or Guillain-Barré syndrome (a peripheral demyelinating disorder) [Manzoli et al, 2011]. These findings are reassuring, but these trials may have not been large enough to detect a small increase in risk.

Similarly, Adverse Events Following Immunization (AEFI) surveillance systems in Europe and the United States (US) did not detect increased risk of MS with pandemic vaccine use. No increased risk was found in an analysis of the EudraVigilance database which tracked reports of suspected autoimmune disorders following use of either adjuvanted (*Pandemrix* and another 3 products) or unadjuvanted pandemic vaccines. There were reports of MS relapse but they were equally distributed among the adjuvanted (7.9% of all reported AEFIs) and unadjuvanted vaccine groups (7.3%) [Isai et al, 2012]. Similar analysis of the US Vaccine Adverse Event Reporting System found that 9 out of 212 (4%) individuals with serious AEFIs following H1N1 vaccination had a neurologic diagnosis of a demyelinating disorder of unclear etiology, 7 (about 3%) had a diagnosis of demyelinating disorder of unknown etiology and 8 (4%) had a diagnosis of acute disseminated encephalomyelitis. The limitations of AEFI surveillance systems in establishing causal associations are well known.

A large retrospective record-linkage study from Sweden reported an increased risk of paraesthesia, but not of diagnosed MS, among persons vaccinated with *Pandemrix* [Bardage, 2011; Persson, 2014]. Among persons with high-risk of influenza complications who were mostly vaccinated in the first 45 days of the campaign (healthcare workers, children, pregnant women and persons with chronic diseases), the risk of MS was 1.17 (95%CI: 0.82 to 1.66) and the risk estimates were highest within 6 weeks after vaccination (1.35 [0.68 to 2.67]). There was no similar increase of risk among other groups. The authors attributed the excess risk among high risk groups targeted for early vaccination to possible confounding by underlying comorbidity and vaccine indication.

Finally, other adjuvanted influenza vaccines such as H5N1influenza vaccines, based on similar oil-in-water adjuvants to those used in *Arepanrix*, were found in some RCTs to be more reactogenic than unadjuvanted seasonal vaccines. However, there were no reports of serious AEFIs including MS [Manzoli et al, 2012].

The evidence is less consistent for the association between the pandemic vaccines and MS relapse. In several small RCTs, there were no differences in the incidence of relapses following H1N1 vaccination [Myers et al, 1977; Bamford et al, 1978]. One small study conducted in an MS "relapse clinic" in the United Kingdom evaluated relapses among 30

200405 (EPI-FLU H1N1-014 VS) Report Final Version 2

patients with MS between November 2009 and January 2010, of whom 18 (60%) received the pandemic H1N1 influenza vaccine and/or the seasonal influenza vaccine (40% were unvaccinated) [McNicholas et al, 2011]. Using unconventional design, akin to self-controlled case series design, the relative risk of relapse was 6.0 (95% CI: 1.4-26.2). However, the relative risk was calculated with a historical reference/baseline period without adjustment for time-varying covariates such as influenza strain activity and there was likelihood of selection bias and referral bias.

A subsequent study of 137 relapsing-remitting MS patients from Argentina found that 60 were vaccinated (49 with seasonal trivalent inactivated influenza vaccines (TIVs) and 11 with monovalent H1N1 pandemic vaccine), among which 28 relapse events were observed. Focusing on the 30-day period after the relapse, the risk was not increased (relative risk 0.86; 95% CI: 0.20-0.36). Findings were similar when the risk period was extended to 60 days and 90 days [Farez et al, 2012].

This is consistent with evidence from earlier studies that found no evidence that influenza vaccination is associated with increased risk of MS relapse. Confavreux *et al.* evaluated the risk of MS relapse after vaccination in 643 patients. They did not find any evidence of an increased risk of relapse following vaccination (relative risk 0.71; 95% CI: 0.40-1.26), irrespective of the vaccine including seasonal influenza vaccine [Confavreux, 2001]. In one review that included 5 small studies, the pooled relative risk of relapse following influenza immunization was 1.24 with a 95% CI of 0.89-1.72. There was no evidence of heterogeneity (p = 0.531) [Farez, 2011]. Similarly in an older review that included 4 RCTs and 7 cohort studies [Rutschmann et al, 2002], there was no difference in the RCTs in rates of early (3 to 4 weeks after vaccine/placebo) MS exacerbation (overall rate difference of 0% (95% CI: -6.9% to 6.9%) or late exacerbation (4 to 6 months after vaccine/placebo), 6.1% (95% CI: -4.1 to 16.3%). However, the pooled rate difference for influenza during the 6 months after the intervention was 8.4% (95% CI: -2.5% to 19.3%).

On the other hand, there is a possibility that MS occurrence and relapse might be precipitated by infections including influenza. An ecological analysis of surveillance data from 1986 –1995 found that months of high influenza A activity in the population were often followed by a higher number of MS relapses [Oikonen et al, 2011]. Prevention of influenza and other infections might protect against MS development or relapse. A Dutch study of MS case series found that MS relapse were more likely to occur following influenza-like illness than following influenza vaccination [Stübgen, 2013]. So it is possible that prevention of influenza using vaccination might actually be reducing the risk of relapse.

The scientific evidence on the association between pandemic vaccination and CNS demyelinating disorders other than MS is even less scarce. In a comprehensive review of published case reports and series, post-marketing surveillance data and observational studies, a diagnosis of optic neuritis was not associated with influenza vaccination. Although there were reports of 13 cases following influenza vaccines, there was no association in two case-control studies [Stübgen, 2013].

12.4. Generalisability

We do not believe our study design or participant selection criteria have reduced the generalizability of our findings to the rest of the Manitoba population. Whether these findings are generalizable to other populations depends on their geographic location, ethnic composition and access to pandemic vaccination. The Manitoba population tends to be typical of many Western populations, especially those in Northern high latitude countries, in terms of MS incidence, ethnic composition (largely European but with significant indigenous and migrant minorities), healthcare systems and even with the timing and epidemiology of the 2009 pandemic and the nature of the public health response to the pandemic.

13. OTHER INFORMATION

None.

14. CONCLUSION

We found no evidence of an association between vaccination with the adjuvanted pandemic vaccine and the incidence of MS or that of other demyelinating conditions that were not ultimately diagnosed as MS.

15. REFERENCES

Ascherio A, Munger KL, Lünemann JD. The initiation and prevention of MS. *Nat Rev Neurol*. 2012; 8(11): 602-12.

Ascherio, A, Zhang S M, Hernán M A, et al., Hepatitis B vaccination and the risk of MS. *N Engl J Med*. 2001; 344(5): 327-32.

Bamford CR, Sibley WA, Laguna JF. SWine influenza vaccination in patients with multiple sclerosis. *Arch Neurol.* 1978; 35:242-3.

Bansil S, Troiano R, Dowling P, et al., Measles vaccination does not prevent MS. *Neuroepidemiology*. 1990; 9(5): 248-54.

Bardage C, Persson I, Örtqvist Å, et al., Neurological and autoimmune disorders after vaccination against pandemic influenza A (H1N1) with a monovalent adjuvanted vaccine: population based cohort study in Stockholm, Sweden. *Brit Med J.* 2011; 343: d5956.

Beck C A, Metz L M, Svenson L W, et al., Regional variation of MS prevalence in Canada. *Mult Scler*. 2005; 11: 516-19.

Canadian Institute for Health Information (2006). Canadian Classification of Health Interventions (Ottawa, Ontario, Canada).

Casetta I, Granieri E, Malagu S, et al., Environmental risk factors and MS: a community-based, case-control study in the province of Ferrara, Italy. *Neuroepidemiology*. 1994; 13(3): 120-28.

Confavreux C, Suissa S, Saddier P, et al., Vaccinations and the risk of relapse in MS. *N Engl J Med*. 2001; 344(5): 319-26.

Cosby S, McQuaid S, Taylor M, et al., Examination of eight cases of MS and 56 neurological and non-neurological controls for genomic sequences of measles virus, canine distemper virus, simian virus 5 and rubella virus. *J Gen Virol*. 1989; 70(8): 2027-36.

Cummings P, McKnight B, Greenland S. Matched Cohort Methods for Injury Research. *Epidemiol Rev.* 2003; 25(1): 43-50.

Currier R D, Meydrech E F, Currier M M. Measles vaccination has had no effect on the occurrence of MS. *Arch Neurol*. 1996; 53(12): 1216.

Dean G. How many people in the world have MS? *Neuroepidemiology*. 1994; 13(1-2): 1.

DeStefano F, Verstraeten T, Jackson L A, et al., Vaccinations and risk of central nervous system demyelinating diseases in adults. *Arch Neurol*. 2003; 60(4): 504.

200405 (EPI-FLU H1N1-014 VS) Report Final Version 2

Dublin S, Jackson M L, Nelson J C, et al., Statin use and risk of community acquired pneumonia in older people: population based case-control study. *Brit Med J.* 2009; 338: b2137.

Elixhauser A, Steiner C, Harris D R, et al., Comorbidity measures for use with administrative data. *Med Care*. 1998; 36(1): 8-27.

Evans C, Beland SG, Kulaga S, Wolfson C, Kingwell E, Marriott J, Koch M, Makhani N, Morrow S, Fisk J, Dykeman J, Jetté N, Pringsheim T, Marrie RA. Incidence and prevalence of multiple sclerosis in the Americas: a systematic review. *Neuroepidemiology*. 2013; 40(3):195-210.

Farez M F, Ysrraelit M C, Fiol M, et al., H1N1 vaccination does not increase risk of relapse in MS: a self-controlled case-series study. *Mult Scler J.* 2012; 18(2): 254-56.

Farez Mf CJ. Yellow fever vaccination and increased relapse rate in travelers with multiple sclerosis. *Arch Neurol*. 2011; 68:1267-71.

Fedson D, Wajda A, Nicol J, et al., Clinical effectiveness of influenza vaccination in Manitoba. *JAMA*. 1993; 270(16): 1578.

Fleiss J L Levin B, Paik M C. (2003). Statistical Methods for Rates and Proportions (3rd ed.) (Formulas 3.18 &3.19). New York: John Wiley & Sons.

Gilmour H, Hofmann N. H1N1 vaccination. *Health Rep: Statistics Canada*, Catalogue no. 82-003-XPE; 2010

Haase, A, Ventura P, Gibbs Jr C, et al., Measles virus nucleotide sequences: de,tection by hybridization in situ. *Science*. 1981; 212(4495): 672-5.

Hammerschlag M R, Ke Z, Lu F, et al., Is Chlamydia pneumoniae present in brain lesions of patients with MS? *J Clin Microbiol.* 2000; 38(11): 4274-76.

Hardy J R, Holford T R, Hall G C, et al., Strategies for identifying pregnancies in the automated medical records of the General Practice Research Database. *Pharmacoepidemiol Drug Safety.* 2004; 13(11): 749-59.

Humphries K H, Rankin J M, Carere R G, et al., Co-morbidity data in outcomes research: are clinical data derived from administrative databases a reliable alternative to chart review? *J Clin Epidemiol*. 2000; 53(4): 343-9.

Isai A, Durand J, Le Meur S, Hidalgo-Simon A, Kurz X. Autoimmune disorders after immunisation with Influenza A/H1N1 vaccines with and without adjuvant: EudraVigilance data and literature review. *Vaccine*. 2012; 30:7123-9.

Kakalacheva K, Lünemann JD. Environmental triggers of MS. *FEBS Lett.* 2011; 585(23): 3724-9.

Kelsey JL, Whittemore AS, Evans AS, Thompson WD (1996). Methods in Observational Epidemiology (2nd Edition) (Table 12-15) Oxford University Press.

200405 (EPI-FLU H1N1-014 VS) Report Final Version 2

Kingwell E, Marriott JJ, Jette N, et al. Incidence and prevalence of multiple sclerosis in Europe: a systematic review. *BMC neurology*. 2013; 13:128.

Kozyrskyj A L, Mustard C A. Validation of an electronic, population-based prescription database. *Ann Pharmacother*. 1998; 32(11): 1152-57.

Lix L, Yogendran M, Burchill C, et al., (2006). Defining and Validating Chronic Diseases: An Administrative Data Approach (Winnipeg, Manitoba Centre for Health Policy).

Mahmud S M, Van Caeseele P, Hammond G, et al., No Association between 2008–09 Influenza Vaccine and Influenza A (H1N1) pdm09 Virus Infection, Manitoba, Canada, 2009. *Emerg Infect Dis.* 2012; 18(5): 801.

Mahmud S, Hammond G, Elliott L, et al., Effectiveness of the pandemic H1N1 influenza vaccines against laboratory-confirmed H1N1 infections: Population-based case—control study. *Vaccine*. 2011; 29(45): 7975-81.

Manzoli L, De Vito C, Salanti G, D'Addario M, Villari P, Ioannidis JPA. Meta-Analysis of the Immunogenicity and Tolerability of Pandemic Influenza A 2009 (H1N1) Vaccines. *PLoS ONE*. 2011; 6:e24384.

Manzoli L, Ioannidis JPA, Flacco ME, De Vito C, Villari P. Effectiveness and harms of seasonal and pandemic influenza vaccines in children, adults and elderly. *Human Vaccines & Immunotherapeutics*. 2012; 8:851-62.

Marrie R A. Environmental risk factors in MS aetiology. *The Lancet Neurology*. 2004; 3(12): 709-18.

Marrie R, Yu N, Blanchard J, Leung S, Elliott L. The rising prevalence and changing age distribution of multiple sclerosis in Manitoba. *Neurology*. 2010; 74:465-71.

Marrie RA, Fisk JD, Stadnyk KJ, et al. Performance of administrative case definitions for comorbidity in multiple sclerosis in Manitoba and Nova Scotia. *Chronic diseases and injuries in Canada*. 2014; 34:145-53.

MCHP Guidelines for Public and Private Sponsorship of Research Projects Accessing the Population Health Data Repository (2011);

http://umanitoba.ca/faculties/medicine/units/community_health_sciences/departmental_units/mchp/protocol/media/Private_Sector_Sponsorship_Guidelines.pdf.

McNicholas N, Chataway J. Relapse risk in patients with MS after H1N1 vaccination, with or without seasonal influenza vaccination. *J Neurol*. 2011; 258(8): 1545-47.

Myers LW, Ellison GW, Lucia M, et al. Swine influenza virus vaccination in patients with multiple sclerosis. *J Infect Dis* 1977; 136 Suppl:S546-54.

Nortvedt M W, Riise T, Myhr K M, et al. Quality of life in MS Measuring the disease effects more broadly. *Neurology*. 1999; 53(5): 1098-103.

200405 (EPI-FLU H1N1-014 VS) Report Final Version 2

Oikonen M, Laaksonen M, Aalto V, et al. Temporal relationship between environmental influenza A and Epstein-Barr viral infections and high multiple sclerosis relapse occurrence. *Mult Scler*. 2011; 17:672-80.

OpenEpi: Open Source Epidemiologic Statistics for Public Health, Version 3.01, Released April 4 and revised April 6, 2013, http://www.openepi.com/v37/SampleSize/SSPropor.htm.

Persson I, Granath F, Askling J, et al., Risks of neurological and immune-related diseases, including narcolepsy, after vaccination with *Pandemrix*: a population- and registry-based cohort study with over 2 years of follow-up. *J Intern Med.* 2014; 275(2): 172-90.

Rao S M, Leo G J, Ellington L, et al., Cognitive dysfunction in MS. II. Impact on employment and social functioning. *Neurology*. 1991; 41(5): 692-96.

Roberts J, Poffenroth L, Roos L, et al., Monitoring childhood immunizations: a Canadian approach. *Am J Public Health*. 1994; 84(10): 1666-8.

Roberts J, Roos L, Poffenroth L, et al., Surveillance of vaccine-related adverse events in the first year of life: a Manitoba cohort study. *J Clin Epidemiol*. 1996; 49(1): 51.

Roos L, Mustard C, Nicol J, et al., Registries and administrative data: organization and accuracy. *Med Care*. 1993; 31(3): 201-12.

Rubin D B. Estimating Causal Effects from Large Data Sets Using Propensity Scores. *Ann Intern Med.* 1997; 127(8 Part 2): 757-63.

Rutschmann OT, McCrory DC, Matchar DB. Immunization and MS: a summary of published evidence and recommendations. *Neurology*. 2002; 59:1837-43.

Schneeweiss S, Rassen JA, Glynn RJ, Avorn J, Mogun H, Brookhart MA. High-dimensional propensity score adjustment in studies of treatment effects using health care claims data. *Epidemiology*. 2009; 20:512-22.

Singh H, Mahmud S, Turner D, et al., Long-Term Use of Statins and Risk of Colorectal Cancer: A Population-Based Study. *Am J Gastroenterol*. 2009; 104(12): 3015-23.

Stübgen J-P. A literature review on optic neuritis following vaccination against virus infections. *Autoimmunity Reviews*. 2013; 12:990-7.

Therneau T M, Grambsch P M (2000). Modeling Survival Data: Extending the Cox Model (New York, Springer).

Thompson L H, Mahmud S M, Keynan Y, et al., Serological Survey of the Novel Influenza A H1N1 in Inner-City Winnipeg, Manitoba, 2009. *Can J Infect Dis Med Micro*. 2011 23(2): 65-70.

Vrethem M, Malmgren KLindh J. A patient with both narcolepsy and MS in association with Pandemrix®vaccination. *J Neurol Sci.* 2012; 321(1-2):89-91.

200405 (EPI-FLU H1N1-014 VS) Report Final Version 2

WHO Collaborating Centre for Drug Statistics Methodology (2002). ATC Index With DDDs (WHO, Oslo, Norway,).

WHO. International statistical classification of diseases and related health problems, Tenth Revision (1993) (WHO, Geneva, Switzerland).

Young T, Roos L, Gelskey D. Estimating the burden of disease: comparing administrative data and self-reports. *Med Care*. 1997; 35(9): 932-47.

Zarychanski R, Stuart T L, Kumar A, et al., Correlates of severe disease in patients with 2009 pandemic influenza (H1N1) virus infection. *CMAJ*. 2010; 182(3): 257-64.

Zorzon M, Zivadinov R, Nasuelli D, et al., Risk factors of MS: a case-control study. *Neurol Sci.* 2003; 24(4): 242-47.

16. REPORT TABLES

Table 1 Codes and definitions used in the analyses

ICD	codes for multiple sclerosis and	d other demyelinating events							
Condition	ICD-9	ICD 10-CA	Algorithm						
Multiple sclerosis (MS)	340 - Multiple sclerosis	G35 - Multiple sclerosis	≥3 contacts including hospital admissions, physician visits, or MS drugs.						
Acute disseminated encephalomyelitis (ADEM)	323.8 - Other causes of encephalitis, myelitis, and encephalomyelitis; 323.9 - Unspecified causes of encephalitis, myelitis, and encephalomyelitis; 323.62 - Other postinfectious encephalitis and encephalomyelitis; 323.63 - Postinfectious myelitis	G04.0 (Acute disseminated encephalitis and encephalomyelitis [ADEM]), G36 - Other acute disseminated demyelination	≥1 hospital admissions						
Acute transverse myelitis (ATM)	323.82 - Other causes of myelitis; 341.2 – Acute (transverse) myelitis	G04.8 - Other encephalitis, myelitis and encephalomyelitis; G37.3 - Acute transverse myelitis	≥1 hospital admissions						
Demyelinating disease of CNS unspecified	341.9 - Demyelinating disease of central nervous system, unspecified	G37.9 - Demyelinating disease of central nervous system, unspecified	≥1 hospital admissions						
Neuromyelitis optica	341.0 - Neuromyelitis optica	G36.0- Neuromyelitis optica	≥1 hospital admissions						
Optic neuritis	377.3 – optic neuritis	H46- Optic neuritis	≥1 hospital admissions						
Encephalitis, myelitis and encephalomyelitis	323- Encephalitis, myelitis and encephalomyelitis	G04 - Encephalitis, myelitis and encephalomyelitis	≥1 hospital admissions, ≥2 physician visits-30 days apart						
Other demyelinating diseases of central nervous system	341- Other demyelinating diseases of central nervous system	G37 - Other demyelinating diseases of central nervous system	≥1 hospital admissions, ≥2 physician visits-30 days apart						
	Tariff codes for differ	rent vaccines							
Tariff code		Vaccine							
8893		a pandemic H1N1 adjuvanted							
8894	Influenza pandemic H1N1 unadjuvanted								
8791		easonal influenza (TIV)							
8961		yvalent pneumococcal 23							
8681		occal conjugate PVC7 1st dose							
8682		occal conjugate PVC7 2nd dose							
8683	Pneumococcal conjugate PVC7 3rd dose								
8684	Pneumoc	occal conjugate PVC7 4th dose							

	Report Final Version 2
	Definition of covariates used in the analyses
Variable	Definition
Drugs [†]	
Multiple sclerosis therapy	Interferon beta-1b (L03AB08), Interferon beta-1a (L03AB07), Glatiramer acetate (L03AX13), Natalizumab (L04AA23)
Anti-HIV	Protease inhibitors (J05AE), Nucleoside and nucleotide reverse transcriptase inhibitors (J05AF), Non-nucleoside reverse transcriptase inhibitors (J05AG), Antivirals for treatment of HIV infections, combinations(J05AR)
Diabetes therapy	Drugs used in diabetes (A10)
Immunosuppressants	Antineoplastic agents (L01), Immunosuppressants (L04A)
Systemic steroids	Corticosteroids for systemic use, plain (H02A), Corticosteroids for systemic use, combinations (H02B)
Pregnancy	
Ongoing pregnancy	≥ 1 admission (O10-O16, O20-O29, O30-O48, O94-99, Z32-Z36) OR ≥ 2 physician claims (640-649, V22) OR ≥ 1 tariff code for prenatal services. Must be within ± 30 days of the index date
Completion of Pregnancy	\geq 1 admission (O8, O65-O75, O80-O84, O85-O92, Z37-Z39) OR \geq 2 physician claims (650-659, 670-676, 670-676, V27) OR \geq 1 tariff code for delivery, abortion or postnatal services. Must be within 270 days following the index date
Medical conditions [‡]	
Alcoholism	≥ 1 admission (E52, F10, K70, X45, X65, Y15, Y90, Y91, G31.2, G62.1, G72.1, I42.6, K29.2, K86.0, O35.4, P04.3, R78.0, T50.6, T51.0, T51.1, T51.9, Y57.3, Z50.2, Z71.4, Z72.1, Z81.1, E24.4, E51.2, Q86.0) OR ≥ 2 physicien claims (303, 291)
Anemia	\geq 1 admission (D50-64) OR \geq 2 physician claims (280-285)
Asthma	≥ 1 admission (J45, J46) OR ≥ 2 physician claims (493)
Cancer-ex non- melanoma skin	\geq 1 admission (C00-C43, C45-C97) OR \geq 1 physician claim (140-172, 174-209, 235-239).
Cardiovascular disease	\geq 1 admission (I00-I99, O11) OR \geq 2 physician claims (390-459)
Chronic renal failure	≥1 admission (N18, N19, Z49, 12.0, I13.1, N25.0, Z99.2) OR ≥ 2 physician claims (403-404 586-587)
Chronic respiratory condition	≥ 1 admission (J40-J99) OR ≥ 2 physician claims (490-496, 500-508)
COPD	\geq 1 admission (J40-J44) OR \geq 2 physician claims (490-492, 496)
Diabetes	≥ 1 admission (E10-E14, O24, G590, G632, H280, H360, M142, M146, N083) OR ≥ 2 physician claims (250) OR ≥ 2 prescriptions for drugs used in treatment of diabetes.
HIV/AIDS	≥ 1 admission (B20-B24, R75, Z21) OR ≥ 2 physician claims (042 V08) OR ≥ 1 prescriptions for drugs used in treatment of HIV.
Hypertension	\geq 1 admission (I10-I15, I67.4, O11) \geq 2 physician claims (401-405)
Immune deficiency	\geq 1 admission (D80-D84, D89) OR \geq 2 physician claims (288, 279)
Immunosuppressed	Having an organ transplant or a diagnosis of HIV/AIDS, other immune deficiency disorders or cancer (other than non-melanoma skin cancer), or receiving prescriptions for immunosuppressants or systemic steroids.
Ischemic Heart diseases	≥ 1 admission (I20-I25) OR ≥ 1 physician claims (410-414)
Obesity	\geq 1 admission (E66) OR \geq 2 physician claims (278)
Organ transplant	\geq 1 admission (T86, Z94, Y83.0) OR \geq 2 physician claims (V42)
Stroke	≥ 1 admission (I61, I63, I64, I69, I67.9) OR ≥ 2 physician claims (431,434, 436-438)

		Report Final Version 2
	Definition of covariates used in the a	nalysis
Variable	Defini	tion
Other chronic heart	> 1 admission (I05-I09, I2	
disease	$OR \ge 2$ physician claims (393-3)	
Chronic liver disease	≥ 1 admission (K70, K71.3-K71.5, K7	
	K75.4, K75.81, K75.89) OR ≥ 2	
Substance abuse	≥ 1 admission (F11-F16, F18-F19) OR	<u> </u>
Chronic disease	Having a diagnosis of diabetes, chronic hypertension), chronic respiratory diseases	
	failure, or chroni	
Definition of Autoimmune	e diseases (All based on ≥ 1 admission [ICD	
	claims (ICD-9 codes as below)	
Disease	ICD9	ICD10
Pernicious anemia	281	D51.0
Autoimmune hemolytic	292	D50.1
anemia	283	D59.1
Idiopathic		
thrombocytopenic	287	D69.3
purpura Thyrotoxicosis	242	E05
-	242	E06.3
Autoimmune thyroiditis	-	E00.3
Type 1 diabetes	250 (AND ≥ 1 prescription [ATC: A10A])	E10
Primary adrenocortical	255	E27.1
insufficiency		
Guillain-Barre syndrome	357	G61.0
Iridocyclitis	364	H20
Crohn's disease	555	K50
Ulcerative colitis	556	K51
Autoimmune hepatitis		K75.4
Primary biliary cirrhosis		K74.3
Celiac disease	579	K90.0
Pemphigus	694	L10
Pemphigoid	694	L12
Psoriasis vulgaris	696	L40.4
Alopecia areata		L63
Vitiligo		L80
Seropositive rheumatoid arthritis	714	M05-M06
Juvenile arthritis	714	M08
Wegener's		
granulomatosis	446	M31.3
Polymyositis	710	M33.2
Dermatomyositis	710	M33.0, M33.1
Polymyalgia rheumatica	725	M31.5–6, M35.3
Myasthenia gravis	358	G70.0
Systemic sclerosis	710	M34
Systemic lupus erythematosis	710	M32.1, M32.8,M32.9
Sjogren's syndrome	710	M35.0
-,	, 10	1.120.0

Definition of Autoimmune diseases (All based on ≥ 1 admission [ICD-10 codes as below] OR ≥ 2 physician claims (ICD-9 codes as below) Ankylosing spondylitis 720 M45						
Ankylosing spondylitis	720	M45				

[†] Drugs were classified based on their Drug Identification Number and the Anatomical Therapeutic Chemical (ATC) Classification System [WHO, 2002].

Table 2 Number of participants by vaccination status

Vaccination status	Number	% of Manitoba population	% of vaccinated (A[H1N1]pdm09/TIV)	% of A(H1N1) pdm09 vaccine
Vaccination – overall				
Total Manitoba population	1,178,259	100	-	-
Any influenza (A[H1N1] pdm09 / TIV)	485,941	41.2	100	-
Any A(H1N1)pdm09	341,347	29.0	70.2	100
Adjuvanted A(H1N1)pdm09 (Arepanrix)	328,778	27.9	67.7	96.3
Unadjuvanted A(H1N1)pdm09	12,559	1.1	2.6	3.7
Any TIV	207,810	17.6	42.8	-
Vaccine types				
A(H1N1)pdm09 alone	278,131	23.6	57.0	81.5
Concurrent A(H1N1)pdm09 / TIV	63,216	5.4	13.0	18.5
TIV alone	144,594	12.3	30.0	-
Vaccine types -detail				
Adjuvanted A(H1N1)pdm09 (Arepanrix) alone	267,539	22.7	55.1	78.4
Concurrent adjuvanted A(H1N1)pdm09 / TIV	61,239	5.2	12.6	17.9
Unadjuvanted A(H1N1)pdm09 alone	10,592	0.9	2.2	3.1
Concurrent unadjuvanted A(H1N1 pdm09 / TIV	1,977	0.2	0.4	0.6
TIV alone	144,594	12.3	29.8	-

A(H1N1)pdm09, Pandemic influenza A (H1N1) strain; TIV, Trivalent Influenza Vaccine

[‡] Based on previously validated chronic disease identification algorithms with modifications [Elixhauser, 1998]. The codes in parentheses are ICD-10-CA codes for hospital admission data and ICD-9-CM codes for physician claims data.

Table 3 Cohort characteristics by vaccination status

Variables	Concu adjuva A(H1N1)pd (n=61,	nted m09 / TIV	Adjuva A(H1N1)p (<i>Arepanrix</i> (n=267,	dm09) alone	A(H1N1 alc	vanted)pdm09 one 0,592)	Concur unadjuvante pdm09 (n=1,9	d A(H1N1 / TIV		alone 4,594)			35,941)	
	N	%	N	%	N	%	N	%	N	%	N	%	P-value	
Age group (years)													<.0001	
<= 14	10,206	16.7	83,097	31.1	1,245	11.8	109	5.5	4,915	3.4	99,463	20.5		
15 - 34	12,637	20.6	62,261	23.3	4,717	44.5	679	34.3	7,094	4.9	92,008	18.9		
35 - 44	9,272	15.1	38,401	14.4	1,835	17.3	363	18.4	6,463	4.5	51,795	10.7		
45 - 54	12,018	19.6	39,958	14.9	1,452	13.7	389	19.7	12,696	8.8	74,454	15.3		
55+	17,106	27.9	43,822	16.4	1,343	12.7	437	22.1	113,426	78.4	168,221	34.6		
Median age (IQR)	43	24 - 56	31	11 - 49	32	22 - 46	40	28 - 53	69	57 - 78	44	20 - 62	<.0001	
Sex													<.0001	
Female	31,081	50.8	144,461	54.0	7,352	69.4	1,194	60.4	82,868	57.3	266,956	54.9		
Resides in an urban area													<.0001	
Urban	41,916	68.4	146,256	54.7	6,202	58.6	1,604	81.1	96,605	66.8	292,583	60.2		
Region of residence													<.0001	
Winnipeg	36,445	59.5	138,466	51.8	5,413	51.1	1,168	59.1	90,466	62.6	271,112	55.8		
North	7,192	11.7	33,040	12.3	456	4.3	125	6.3	3,317	2.3	44,130	9.1		
South	17,602	28.7	96,033	35.9	4,723	44.6	684	34.6	50,811	35.1	170,699	35.1		
Income quintile													<.0001	
Q1 (lowest)	9,766	15.9	53,269	19.9	1,803	17.0	279	14.1	27,899	19.3	92,147	19.0		
Q2	11,066	18.1	47,036	17.6	1,833	17.3	355	18.0	27,593	19.1	91,214	18.8		
Q3	10,976	17.9	48,257	18.0	1,766	16.7	358	18.1	28,037	19.4	91,542	18.8		
Q4	12,454	20.3	50,592	18.9	2,373	22.4	447	22.6	27,167	18.8	95,379	19.6		
Q5 (highest)	15,602	25.5	62,320	23.3	2,613	24.7	503	25.4	25,103	17.4	101,411	20.9		
Cannot be calculated	1,375	2.2	6,065	2.3	204	1.9	35	1.8	8,795	6.1	14,248	2.9		
Season of birth													0.0513	
Winter	14,538	23.7	63,784	23.8	2,556	24.1	469	23.7	34,416	23.8	114,737	23.6	34,416	
Spring	15,931	26.0	69,266	25.9	2,811	26.5	507	25.6	37,296	25.8	124,946	25.7	37,296	

200405 (EPI-FLU H1N1-014 VS)

											110	POLLEINE	ii version
Variables	Concuradjuva A(H1N1)pdi (n=61,	nted m09 / TIV	Adjuva A(H1N1)p (<i>Arepanrix</i> (n=267,	odm09 r) alone	A(H1N1	ne	Concur unadjuvante pdm09 (n=1,9	d A(H1N1 / TIV	TIV a		Unvacc (n=485		
	N	%	N	%	N	%	N	%	N	%	N	%	P-value
Summer	15,804	25.8	69,202	25.9	2,667	25.2	498	25.2	37,336	25.8	125,972	25.9	37,336
Fall	14,966	24.4	65,287	24.4	2,558	24.2	503	25.4	35,546	24.6	120,286	24.8	35,546
Birth year cohort													<.001
<=1909	S	S	8	0.0	0	0.0	0	0.0	170	0.1	257	0.1	
1910-1919	91	0.1	322	0.1	S	S	0	0.0	5,983	4.1	6,665	1.4	
1920-1929	867	1.4	2,251	0.8	16	0.2	0	0.0	26,692	18.5	29,200	6.0	
1930-1939	2,153	3.5	5,316	2.0	37	0.3	S	S	38,008	26.3	46,538	9.6	
1940-1949	7,797	12.7	19,285	7.2	670	6.3	205	10.4	33,321	23.0	54,280	11.2	
1950-1959	12,633	20.6	36,536	13.7	1,331	12.6	435	22.0	16,654	11.5	69,543	14.3	
1960-1969	10,424	17.0	39,853	14.9	1,514	14.3	352	17.8	9,167	6.3	64,209	13.2	
1970-1979	8,779	14.3	36,412	13.6	2,672	25.2	412	20.8	5,003	3.5	48,478	10.0	
1980-1984	3,221	5.3	13,781	5.2	1,358	12.8	194	9.8	1,888	1.3	26,675	5.5	
1985-1989	2,526	4.1	12,649	4.7	810	7.6	145	7.3	1,586	1.1	20,555	4.2	
1990-1994	2,642	4.3	18,809	7.0	966	9.1	125	6.3	1,258	0.9	21,410	4.4	
1995-1999	3,511	5.7	27,407	10.2	1,135	10.7	101	5.1	1,358	0.9	33,064	6.8	
2000-2004	3,559	5.8	29,937	11.2	54	0.5	S	S	1,526	1.1	35,204	7.2	
2005-2009	3,035	5.0	24,973	9.3	28	0.3	S	S	1,980	1.4	29,863	6.1	
Cancer (excl: non- melanoma skin)													<.0001
Yes	2,390	3.9	6,560	2.5	189	1.8	47	2.4	15,083	10.4	22,834	4.7	
Chronic respiratory diseases													<.0001
Yes	2,940	4.8	8,648	3.2	194	1.8	56	2.8	11,813	8.2	21,236	4.4	
Chronic renal failure													<.0001
Yes	203	0.3	818	0.3	7	0.1	S	S	1,782	1.2	2,966	0.6	
Diabetes													<.0001
Yes	5,056	8.3	12,367	4.6	236	2.2	61	3.1	25,830	17.9	41,340	8.5	

200405 (EPI-FLU H1N1-014 VS)

Variables	Concur adjuva A(H1N1)pdi (n=61,	nted m09 / TIV 239)	Adjuva A(H1N1)p (<i>Arepanrix</i> (n=267,	dm09) alone 539)	Unadju A(H1N1 alo (n=10)pdm09 one (,592)	Concur unadjuvante pdm09 (n=1,9	d A(H1N1 / TIV 77)	TIV a	4,594)	Unvacc (n=485	inated ,941)	ai version 2
	N	%	N	%	N	%	N	%	N	%	N	%	P-value
Immunosuppressed													<.0001
Yes	4,028	6.6	11,541	4.3	322	3.0	78	3.9	20,990	14.5	33,561	6.9	
Ischemic heart disease													<.0001
Yes	1,651	2.7	3,906	1.5	83	0.8	16	0.8	15,955	11.0	21,404	4.4	
Autoimmune diseases													<.0001
Yes	2,669	4.4	6,680	2.5	197	1.9	45	2.3	10,179	7.0	17,661	3.6	
Any chronic diseases													<.0001
Yes	7,485	12.2	18486	6.9	364	3.4	96	4.9	42,909	29.7	65,158	13.4	
Charlson index group													<.0001
0	59,249	96.8	262,072	98.0	10,510	99.2	1,962	99.2	129,809	89.8	460,976	94.9	
1+	1,990	3.2	5,467	2.0	82	0.8	15	0.8	14,785	10.2	24,965	5.1	
Median Charlson index (IQR)	2	1-2	2	1-3	2	1-2	1	1-2	2	1 - 3	2	1 - 3	<.0001
Pregnancy (% of all 15-49 old females)													<.0001
Yes	355	2.4	2,184	3.1	2,857	50.6	330	40.4	816	7.4	5,160	4.9	
Number of hospital admission during past year													<.0001
0	56,720	92.6	250,175	93.5	9,878	93.3	1,850	93.6	126,657	87.6	443,977	91.4	
1	3,578	5.8	13,481	5.0	590	5.6	106	5.4	12,820	8.9	30,544	6.3	
2+	941	1.5	3,883	1.5	124	1.2	21	1.1	5,117	3.5	11,420	2.4	
Median hospital admission during past year (IQR)	1	1-1	1	1-1	1	1-1	1	1-1	1	1 - 2	1	1 - 2	<.0001

200405 (EPI-FLU H1N1-014 VS)

											Re	port Fina	Version
Variables	Concu adjuva A(H1N1)pd (n=61,	nted m09 / TIV 239)	Adjuva A(H1N1)p (<i>Arepanrix</i> (n=267,	odm09 () alone (539)	A(H1N1 ald	Unadjuvanted Concurrent (H1N1)pdm09 unadjuvanted A(H1N1 alone pdm09 / TIV (n=10,592) (n=1,977)			TIV alone (n=144,594)		inated 5,941)		
	N	%	N	%	N	%	N	%	N	%	N	%	P-value
Had >=11 physician visits during past year													<.0001
Yes	14,709	24.0	43,866	16.4	2,306	21.8	489	24.7	69,419	48.0	128,707	26.5	
Median physician visits during past year (IQR)	11	7-16	10	7-15	10	7-15	10	7-15	13	9 - 19	11	8- 17	<.0001
Period of influenza vaccination													<.0001
Early (<=Nov 17, 2009)	45,951	75.0	252,011	94.2	9,732	91.9	1,305	66.0	139,925	96.8	N/A	139,925	
Later (>=Nov 18, 2009)	15,288	25.0	15,528	5.8	860	8.1	672	34.0	4,669	3.2	N/A	4,669	
High priority for A(H1N1)pdm09 vaccine													<.0001
Yes	25,652	41.9	142,909	53.4	6,200	58.5	683	34.5	59,165	40.9	230,948	47.5	
High priority for TIV													<.0001
Yes	12,958	21.2	42,207	15.8	3,231	30.5	419	21.2	105,557	73.0	158,565	32.6	
Receipt of TIV 08/09 vaccine													<.0001
Yes	22,231	36.3	41,896	15.7	1,237	11.7	542	27.4	109,107	75.5	42,071	8.7	
Receipt of pneumococcal vaccine													<.0001
Yes	11,554	18.9	49,203	18.4	286	2.7	64	3.2	87,552	60.6	86,261	17.8	
Median time of entire follow up (days)- MS	1,140	811 – 1,155	749	360 – 1,159	1139	386 – 1,160	1,140	1,133 – 1,153	42	22 – 1,140	1,151	612 – 1,162	<.0001

200405 (EPI-FLU H1N1-014 VS)

Report Final Version 2

Variables	Concur adjuva A(H1N1)pdi (n=61,	nted m09 / TIV	Adjuvar A(H1N1)p (<i>Arepanrix</i> (n=267,	dm09) alone	A(H1N1 alc	vanted)pdm09 one 0,592)	Concurr unadjuvanted pdm09 / (n=1,97	A(H1N1 TIV	TIV alone (n=144,594)		Unvaccinated (n=485,941)		
	N	%	N	%	N	%	N	%	N	%	N	%	P-value
Median time of follow up in one year - MS	365	365 - 365	365	360 - 365	365	365 - 365	365	365 - 365	42	22 - 365	365	365 - 365	<.0001

A(H1N1)pdm09, Pandemic influenza A (H1N1) strain; TIV, Trivalent Influenza Vaccine

Table 4 Crude and age-standardized rates (per 100,000 population) of incident multiple sclerosis during the period of one year following index date by vaccination status

Vaccination status	Total Population	Number of events	Rate (95% CI)	Rate Ratio	o (95% CI)
vaccination status	Total Population	Number of events	Crude	Age-standardized	Crude	Age-adjusted
Unvaccinated	457,247	106	23.2(19.2 – 28.0)	24.2(20.1 – 28.3)	1	1
Vaccinated (A[H1N1] pdm09 / TIV)	360,417	69	19.1(15.1 – 24.2)	20.2(15.4 – 24.9)	0.8(0.6 - 1.1)	0.8(0.3 - 2.2)
A(H1N1)pdm09 alone	243,697	43	17.6(13.1 – 23.8)	17.7(14.1 – 21.2)	0.8(0.5 - 1.1)	0.7(0.3 - 1.7)
Concurrent A(H1N1)pdm09/TIV	59,174	12	20.3(11.5 – 35.7)	19.4(8.6 – 30.2)	0.9(0.5 - 1.6)	0.8(0.1 - 5.0)
TIV alone	57,546	14	24.3(14.4 – 41.1)	36.8(25.0 – 48.6)	1.0(0.6 – 1.8)	1.5(0.3 – 6.8)
Adjuvanted A(H1N1)pdm09 (Arepanrix) alone	233,978	40	17.1(12.5 – 23.3)	17.4(13.8 – 21.1)	0.7(0.5 - 1.1)	0.7(0.3 - 1.7)
Concurrent adjuvanted A(H1N1 pdm09 / TIV	57,293	11	19.2(10.6 – 34.7)	18.3(7.3 – 29.3)	0.8(0.4 - 1.5)	0.8(0.1 - 5.1)
Unadjuvanted A(H1N1)pdm09 alone	9,718	S	S	18.6(8.8 – 28.3)	1.3(0.4 - 4.2)	0.8(0.1 - 4.2)
Concurrent unadjuvanted A(H1N1 pdm09 / TIV	1,881	S	S	37.9(13.8 – 62.0)	2.3(0.3 – 16.4)	1.6(0.1 – 26.6)

s, suppressed due to small sample size (n= 1-5). A(H1N1)pdm09, Pandemic influenza A (H1N1) strain; TIV, Trivalent Influenza Vaccine

200405 (EPI-FLU H1N1-014 VS)

Table 5 Crude and age-standardized rates (per 100,000 PY) of incident multiple sclerosis during anytime following index date by vaccination status

	Total	Number of	Rate (95% CI)	Rate Rati	o (95% CI)	
Vaccination status	person- years	events	Crude	Age-standardized	Crude	Age-adjusted	
Unvaccinated	1,204,491	188	15.6(13.5 - 18.0)	16.0(13.5 - 18.5)	1	1	
Vaccinated (A(H1N1)pdm09/TIV)	876,566	132	15.1(12.7 - 17.9)	15.4(12.4 - 18.4)	1.0(0.8 - 1.2)	1.0(0.5 - 1.9)	
A(H1N1)pdm09 alone	563,474	82	14.6(11.7 - 18.1)	14.9(9.3 - 20.5)	0.9(0.7 - 1.2)	0.9(0.3 - 2.8)	
Concurrent A(H1N1)pdm09/TIV	164,549	33	20.1(14.3 - 28.2)	18.2(11.8 - 24.6)	1.3(0.9 - 1.9)	1.1(0.4 - 3.6)	
TIV alone	148,542	17	11.4(7.1 - 18.4)	16.6(9.5 - 23.8)	0.7(0.4 - 1.2)	1.0(0.3 - 3.9)	
Adjuvanted A(H1N1)pdm09 (Arepanrix) alone	539,682	78	14.5(11.6 - 18.0)	15.0(9.3 - 20.7)	0.9(0.7 - 1.2)	0.9(0.3 - 2.9)	
Concurrent adjuvanted A(H1N1)pdm09/TIV	159,189	32	20.1(14.2 - 28.4)	18.4(11.9 - 24.9)	1.3(0.9 - 1.9)	1.1(0.4 - 3.7)	
Unadjuvanted A(H1N1)pdm09 alone	23,793	S	S	9.7(3.6 - 15.8)	1.1(0.4 - 2.9)	0.6(0.1 - 2.6)	
Unadjuvanted A(H1N1)pdm09/TIV	5,360	S	S	13.1(0.0 - 27.2)	1.2(0.2 - 8.5)	0.8(0.0 - 13.5)	

s, suppressed due to small sample size (n= 1-5). A(H1N1)pdm09, Pandemic influenza A (H1N1) strain; TIV, Trivalent Influenza Vaccine

Table 6 Crude and age-standardized rates (per 100,000 population) of incident demyelinating conditions not ultimately diagnosed as multiple sclerosis during the period of one year following index date by vaccination status

Vaccination status	Total Denulation	Number of events	Rat	e (95% CI)	Rate Ratio (95% CI)	
Vaccination status	Total Population	Number of events	Crude	Age-standardized	Crude	Age-adjusted
Unvaccinated	456,883	27	5.9(4.1 - 8.6)	6.9(2.6 - 11.1)	1	1
Vaccinated (A(H1N1)pdm09/TIV)	360,123	17	4.7(2.9 - 7.6)	4.7(0.0 - 10.6)	0.8(0.4 - 1.5)	0.7(0.1 - 6.4)
A(H1N1) pdm09 alone	243,493	S	S	5.6(0.0 - 13.3)	0.8(0.4 - 1.6)	0.8(0.1 - 10.6)
Concurrent A(H1N1) pdm09/TIV	59,115	S	S	7.8(0.0 - 17.0)	1.4(0.6 - 3.7)	1.1(0.1 - 15.2)
TIV alone	57,515	0	0	0	N/A	N/A
Adjuvanted A(H1N1)pdm09 (Arepanrix) alone	233,784	11	4.7(2.6 - 8.5)	5.4(0.0 - 13.1)	0.8(0.4 - 1.6)	0.8(0.1 - 10.8)
Concurrent adjuvanted A(H1N1)pdm09/TIV	57,236	S	S	8.0(0.0 - 17.3)	1.5(0.6 - 3.8)	1.2(0.1 - 15.5)
Unadjuvanted A(H1N1)pdm09 alone	9,709	S	S	6.2(0.0 - 16.0)	1.7(0.2 - 12.8)	0.9(0.0 - 18.1)
Unadjuvanted A(H1N1)pdm09/TIV	1,879	0	0	0	N/A	N/A

s, suppressed due to small sample size (n= 1-5). A(H1N1)pdm09, Pandemic influenza A (H1N1) strain; TIV, Trivalent Influenza Vaccine

200405 (EPI-FLU H1N1-014 VS)

Table 7 Crude and age-standardized rates (per 100,000 PY) of incident demyelinating conditions not ultimately diagnosed as multiple sclerosis anytime following index date by vaccination status

			R	ate (95% CI)	Rate F	Ratio (95% CI)
Vaccination status	Total of person- years	Number of events	Crude	Age-standardized	Crude	Age-adjusted
Unvaccinated	1,203,667	40	3.3(2.4 - 4.5)	3.6(0.8 - 6.3)	1	1
Vaccinated (A(H1N1)pdm09/TIV)	875,950	25	2.9(1.9 - 4.2)	2.9(0.0 - 7.1)	0.9(0.5 - 1.4)	0.8(0.1 - 6.2)
A(H1N1)pdm09 alone	563,062	17	3.0(1.9 - 4.9)	3.5(0.0 - 9.1)	0.9(0.5 - 1.6)	1.0(0.1 - 10.3)
Concurrent A(H1N1)pdm09/TIV	164,411	S	S	3.8(0.0 - 10.7)	1.1(0.5 - 2.6)	1.1(0.1 - 15.6)
TIV alone	148,477	S	S	0.4(0.0 - 2.1)	0.4(0.1 - 1.7)	0.1(0.0 - 1.0)
Adjuvanted A(H1N1)pdm09 (Arepanrix) alone	539,292	15	2.8(1.7 - 4.6)	3.2(0.0 - 8.9)	0.8(0.5 - 1.5)	0.9(0.1 - 10.5)
Concurrent adjuvanted A(H1N1)pdm09/TIV	159,056	6	3.8(1.7 - 8.4)	4.0(0.0 - 10.9)	1.1(0.5 - 2.7)	1.1(0.1 - 16.1)
Unadjuvanted A(H1N1) alone	23,770	S	S	7.4(0.0 - 18.0)	2.5(0.6 - 10.5)	2.1(0.1 - 39.9)
Unadjuvanted A(H1N1)pdm09/TIV	5,356	0	N/A	N/A	N/A	N/A

s, suppressed due to small sample size (n= 1-5). A(H1N1)pdm09, Pandemic influenza A (H1N1) strain; TIV, Trivalent Influenza Vaccine

Table 8 Effect of H1N1/TIV vaccination on occurrence of incident multiple sclerosis during the period of one year following index date

		Model A*		Model B ^{&}			
Vaccination status	Hazard Ratio	95% Cls	P-value	Hazard Ratio	95% Cls	P-value	
Unvaccinated		Reference group			Reference group		
Vaccinated (H1N1/TIV)	0.85	0.61 - 1.17	0.321	0.87	0.60 - 1.26	0.460	
H1N1 alone	0.88	0.58 - 1.32	0.527	0.91	0.59 - 1.40	0.661	
Concurrent H1N1/TIV	0.61	0.29 - 1.29	0.198	0.63	0.30 - 1.36	0.241	
TIV alone	1.08	0.51 - 2.29	0.847	1.21	0.51 - 2.89	0.671	
H1N1 adj alone	0.89	0.58 - 1.36	0.583	0.92	0.59 - 1.45	0.726	
Concurrent H1N1 adj/TIV	0.59	0.27 - 1.28	0.183	0.61	0.28 - 1.34	0.219	
H1N1 unadj	0.75	0.17 - 3.35	0.706	0.77	0.17 - 3.46	0.734	
H1N1 unadj/TIV	1.00	0.06 - 15.99	1.000	1.10	0.07 - 18.06	0.946	

^{*}Model adjusted for propensity scores, age, sex, and area of residence; & Model adjusted for Model A variables plus receipt of TIV 08/09

Table 9 Effect of H1N1/TIV vaccination on occurrence of incident multiple sclerosis during anytime following index date

		Model A*			Model B&	
Vaccination status	Hazard Ratio	95% Cls	P-value	Hazard Ratio	95% Cls	P-value
Unvaccinated		Reference group			Reference group)
Vaccinated (H1N1/TIV)	1.02	0.80 - 1.31	0.849	1.11	0.84 - 1.46	0.464
H1N1 alone	1.03	0.75 - 1.40	0.873	1.08	0.78 - 1.50	0.637
Concurrent H1N1/TIV	1.07	0.64 - 1.79	0.793	1.17	0.69 - 2.00	0.559
TIV alone	0.94	0.48 - 1.86	0.862	1.17	0.55 - 2.49	0.691
H1N1 adj alone	1.04	0.75 - 1.44	0.805	1.10	0.79 - 1.54	0.580
Concurrent H1N1 adj/TIV	1.07	0.64 - 1.81	0.789	1.17	0.68 - 2.02	0.566
H1N1 unadj	0.80	0.21 - 2.98	0.739	0.83	0.22 - 3.11	0.786
H1N1 unadj/TIV	1.00	0.06 - 15.99	1.000	1.21	0.07 - 19.80	0.895

^{*}Model adjusted for propensity scores, age, sex, and area of residence; & Model adjusted for Model A variables plus receipt of TIV 08/09

Table 10 Effect of H1N1/TIV vaccination on occurrence of incident demyelinating conditions, which do not ultimately lead to multiple sclerosis, during the period of one year following index date

		Model A*		Model B ^{&}			
Vaccination status	Hazard Ratio	Ratio 95% CIS P-value			95% Cls	P-value	
Unvaccinated		Reference group			Reference group		
Vaccinated (H1N1/TIV)	0.63	0.33 - 1.19	0.153	0.62	0.31 - 1.24	0.174	
H1N1 alone	0.52	0.25 - 1.09	0.082	0.54	0.26 - 1.15	0.111	
Concurrent H1N1/TIV	2.00	0.37 - 10.92	0.423	2.31	0.36 - 15.03	0.381	
TIV alone							
H1N1 adj alone	0.50	0.23 - 1.07	0.074	0.52	0.24 - 1.13	0.100	
Concurrent H1N1 adj/TIV	2.00	0.37 - 10.92	0.423	2.29	0.35 - 14.84	0.387	
H1N1 unadj	1.00	0.06 - 15.99	1.000	1.00	0.06 - 15.99	1.000	
H1N1 unadj/TIV							

^{*}Model adjusted for propensity scores, age, sex, and area of residence; & Model adjusted for model A variables plus receipt of TIV 08/09

Table 11 Effect of H1N1/TIV vaccination on occurrence of incident demyelinating conditions, which do not ultimately lead to multiple sclerosis, during anytime following index date

		Model A*		Model B ^{&}			
Vaccination status	Hazard Ratio	95% Cls	P-value	Hazard Ratio	95% Cls	P-value	
Unvaccinated		Reference group			Reference group	1	
Vaccinated (H1N1/TIV)	0.67	0.39 - 1.14	0.141	0.67	0.37 - 1.21	0.183	
H1N1 alone	0.54	0.29 - 1.00	0.051	0.56	0.30 - 1.07	0.078	
Concurrent H1N1/TIV	1.67	0.40 - 6.97	0.484	2.07	0.42 - 10.27	0.373	
TIV alone	1.00	0.14 - 7.10	1.000	1.52	0.14 - 16.14	0.729	
H1N1 adj alone	0.52	0.27 - 0.99	0.046	0.54	0.28 - 1.05	0.071	
Concurrent H1N1 adj/TIV	1.67	0.40 - 6.97	0.484	2.06	0.41 - 10.19	0.378	
H1N1 unadj	1.00	0.06 - 15.99	1.000	1.00	0.06 - 15.99	1.000	
H1N1 unadj/TIV							

^{*}Model adjusted for propensity scores, age, sex, and area of residence; & Model adjusted for Model A variables plus receipt of TIV 08/09

Table 12 Effect of H1N1/TIV vaccination on occurrence of incident multiple sclerosis during the period of one year following index date stratified by age groups

			Model A*		Model B ^{&}			
Age group (years)	Vaccination status	Hazard Ratio	95% Cls	P-value	Hazard Ratio	95% Cls	P-value	
	Unvaccinated	Reference group			Reference group			
<= 24	Vaccinated (H1N1/TIV)	0.50	0.05 - 5.51	0.571	0.50	0.05 - 5.51	0.571	
F	H1N1 alone							
	Concurrent H1N1/TIV							
	TIV alone							
	H1N1 adj alone							
	Concurrent H1N1 adj/TIV							
	H1N1 unadj							
	H1N1 unadj/TIV							
25-49	Vaccinated (H1N1/TIV)	1.03	0.65 - 1.63	0.907	1.01	0.62 - 1.65	0.969	
	H1N1 alone	1.43	0.82 - 2.50	0.210	1.41	0.79 - 2.50	0.244	
	Concurrent H1N1/TIV	0.33	0.11 - 1.03	0.057	0.33	0.10 - 1.03	0.056	
	TIV alone	1.00	0.20 - 4.95	1.000	0.93	0.16 - 5.34	0.934	
	H1N1 adj alone	1.50	0.83 - 2.72	0.183	1.49	0.81 - 2.75	0.203	
	Concurrent H1N1 adj/TIV	0.27	0.08 - 0.98	0.046	0.27	0.08 - 0.98	0.046	
	H1N1 unadj	1.00	0.20 - 4.95	1.000	0.99	0.20 - 4.96	0.991	
	H1N1 unadj/TIV	1.00	0.06 - 15.99	1.000	0.97	0.06 - 16.37	0.985	
50+	Vaccinated (H1N1/TIV)	0.73	0.38 - 1.38	0.332	0.91	0.39 - 2.14	0.827	
	H1N1 alone	0.63	0.20 - 1.91	0.410	0.75	0.23 - 2.45	0.630	
	Concurrent H1N1/TIV	0.80	0.21 - 2.98	0.739	0.98	0.24 - 3.94	0.972	
	TIV alone	0.78	0.29 - 2.09	0.618	1.14	0.31 - 4.22	0.850	
	H1N1 adj alone	0.71	0.23 - 2.25	0.566	0.89	0.26 - 3.05	0.848	
	Concurrent H1N1 adj/TIV	0.80	0.21 - 2.98	0.739	1.00	0.25 - 4.03	0.994	
	H1N1 unadj							
	H1N1 unadj/TIV							

^{*}Model adjusted for propensity scores, age, sex, and area of residence; & Model adjusted for Model A variables plus receipt of TIV 08/09

Table 13 Effect of H1N1/TIV vaccination on occurrence of incident multiple sclerosis during anytime following index date stratified by age groups

			Model A*			Model B ^{&}		
Age group (years)	Vaccination status	Hazard Ratio	95% CIs	P-value	Hazard Ratio	95% CIs	P-value	
	Unvaccinated	Reference group			Reference group			
<= 24	Yes	1.43	0.54 - 3.75	0.469	1.29	0.48 - 3.45	0.618	
	H1N1 alone	1.50	0.53 - 4.21	0.442	1.33	0.46 - 3.84	0.594	
	Concurrent H1N1/TIV	1.00	0.06 - 15.99	1.000	1.00	0.06 - 15.99	1.000	
	TIV alone							
	H1N1 adj alone	1.50	0.53 - 4.21	0.442	1.33	0.46 - 3.84	0.594	
	Concurrent H1N1 adj/TIV	1.00	0.06 - 15.99	1.000	1.00	0.06 - 15.99	1.000	
	H1N1 unadj							
	H1N1 unadj/TIV							
25-49	Yes	1.18	0.84 - 1.65	0.344	1.19	0.83 - 1.70	0.348	
	H1N1 alone	1.24	0.82 - 1.88	0.298	1.24	0.81 - 1.89	0.317	
	Concurrent H1N1/TIV	1.19	0.61 - 2.31	0.613	1.18	0.60 - 2.33	0.628	
	TIV alone	0.60	0.14 - 2.51	0.484	0.59	0.13 - 2.62	0.490	
	H1N1 adj alone	1.27	0.83 - 1.95	0.276	1.27	0.81 - 1.97	0.295	
	Concurrent H1N1 adj/TIV	1.20	0.60 - 2.38	0.602	1.19	0.60 - 2.40	0.616	
	H1N1 unadj	1.00	0.25 - 4.00	1.000	1.00	0.25 - 4.00	0.996	
	H1N1 unadj/TIV	1.00	0.06 - 15.99	1.000	0.99	0.06 - 16.21	0.992	
50+	Yes	0.88	0.50 - 1.56	0.662	1.36	0.63 - 2.97	0.435	
	H1N1 alone	1.00	0.38 - 2.66	1.000	1.37	0.47 - 4.00	0.564	
	Concurrent H1N1/TIV	0.86	0.29 - 2.55	0.782	1.26	0.38 - 4.19	0.711	
	TIV alone	0.80	0.32 - 2.03	0.638	1.49	0.44 - 5.01	0.521	
	H1N1 adj alone	1.14	0.41 - 3.15	0.796	1.65	0.54 - 5.10	0.381	
	Concurrent H1N1 adj/TIV	0.86	0.29 - 2.55	0.782	1.29	0.38 - 4.32	0.680	
	H1N1 unadj							
	H1N1 unadj/TIV							

^{*}Model adjusted for propensity scores, age, sex, and area of residence; & Model adjusted for Model A variables plus receipt of TIV 08/09

Table 14 Effect of H1N1/TIV vaccination on occurrence of incident multiple sclerosis during the period of one year following index date stratified by status of immunosuppressed conditions

			Model A*			Model B&	
Status of immunosuppression	Vaccination status	Hazard Ratio	95% Cls	P-value	Hazard Ratio	95% Cls	P-value
	Unvaccinated		Reference grou	ip	F	Reference grou	p
Immunosuppressed	Yes						
	H1N1 alone						
	Concurrent H1N1/TIV						
	TIV alone						
	H1N1 adj alone						
	Concurrent H1N1 adj/TIV						
	H1N1 unadj						
	H1N1 unadj/TIV						
Not immunosuppressed	Yes	0.91	0.64 - 1.29	0.587	0.88	0.60 - 1.32	0.545
	H1N1 alone	0.98	0.63 - 1.51	0.912	0.97	0.62 - 1.54	0.914
	Concurrent H1N1/TIV	0.57	0.24 - 1.36	0.207	0.57	0.24 - 1.37	0.208
	TIV alone	1.11	0.45 - 2.73	0.819	1.11	0.39 - 3.15	0.847
	H1N1 adj alone	1.00	0.63 - 1.58	1.000	1.00	0.62 - 1.62	0.988
	Concurrent H1N1 adj/TIV	0.54	0.21 - 1.35	0.187	0.54	0.21 - 1.35	0.188
	H1N1 unadj	0.75	0.17 - 3.35	0.706	0.75	0.17 - 3.37	0.710
	H1N1 unadj/TIV	1.00	0.06 - 15.99	1.000	1.01	0.06 - 16.58	0.995

^{*}Model adjusted for propensity scores, age, sex, and area of residence; & Model adjusted for Model A variables plus receipt of TIV 08/09

Table 15 Effect of H1N1/TIV vaccination on occurrence of incident multiple sclerosis during anytime following index date stratified by status of immunosuppressed conditions

			Model A*			Model B&	
Status of immunosuppression	Vaccination status	Hazard Ratio	95% Cls	P-value	Hazard Ratio	95% Cls	P-value
	Unvaccinated	l	Reference grou	ip	F	Reference grou	p
Immunosuppressed	Yes	0.00	0.00	1.000	0.00	0.00	1.000
	H1N1 alone						
	Concurrent H1N1/TIV						
	TIV alone	0.00	0.00	1.000	0.00	0.00	1.000
	H1N1 adj alone						
	Concurrent H1N1 adj/TIV						
	H1N1 unadj						
	H1N1 unadj/TIV						
Not immunosuppressed	Yes	1.05	0.80 - 1.37	0.732	1.08	0.81 - 1.45	0.587
	H1N1 alone	1.04	0.75 - 1.45	0.801	1.07	0.76 - 1.50	0.703
	Concurrent H1N1/TIV	1.09	0.62 - 1.91	0.773	1.13	0.63 - 2.01	0.689
	TIV alone	1.00	0.45 - 2.23	1.000	1.11	0.46 - 2.68	0.810
	H1N1 adj alone	1.08	0.77 - 1.51	0.665	1.10	0.78 - 1.57	0.579
	Concurrent H1N1 adj/TIV	1.09	0.61 - 1.95	0.768	1.13	0.63 - 2.03	0.692
	H1N1 unadj	0.60	0.14 - 2.51	0.484	0.61	0.15 - 2.57	0.505
	H1N1 unadj/TIV	1.00	0.06 - 15.99	1.000	1.10	0.07 - 17.89	0.948

^{*}Model adjusted for propensity scores, age, sex, and area of residence; & Model adjusted for Model A variables plus receipt of TIV 08/09

Annex 1 List of stand-alone documents

Number	Document reference number	Date	Title
1.	200405	27-APR-2016	Annex 1: List of stand-alone documents
2.	200405	27-APR-2016	Annex 2: Trademarks
3.	200405	27-APR-2016	Annex 3: Study report revision history
4.	200405	27-APR-2016	Annex 4: Report sign-off

Annex 2 Trademarks

The following trademarks are used in the present report.

Note: In the body of the report (including the synopsis), the names of the vaccines/products and/or medications will be written without the superscript symbol TM or $^{\circledR}$ and in italics.

Trademarks of the GlaxoSmithKline group of companies
Arepanrix™
Pandemrix®

Generic description			
AS03-Adjuvanted H1N1 Pandemic Influenza			
Vaccine			
Pandemic influenza vaccine (H1N1) (split			
virion, inactivated, adjuvanted)			

Annex 3 Study report revision history

Revised version number	Date of previous report	Sections revised	Amendment or update	Reason
Version 1	07 Dec 2015	Section 1. Abstract Section 6. Milestones Section 11.2. Descriptive data Section 12.2. Limitation	Update	Updated following Pharmacovigilance Risk Assessment Committee review of the PASS final study report (Version 1) submitted to EMA in December 2015. Additional information requested, with the final study report to address the comment: "The MAH should provide the distributions for the propensity scores in the different groups and discuss any impact of using a propensity score based on any vaccination vs. none in the analyses split by vaccination type".

Annex 4 Report sign-off

Signature of Principal Investigator

GlaxoSmithKline Biologicals Vaccine Value and Health Science Investigator Approval Page

Please note that by signing this page, you take responsibility for the content of the Report, including appendices

STUDY TITLE: An observational retrospective database analysis to estimate the risk of Multiple Sclerosis (MS) following vaccination with ArepanrixTM in Manitoba, Canada

Study: 200405 (EPI-FLU H1N1-014 VS) Development Phase: NA

I have read this report and confirm that to the best of my knowledge it accurately describes the conduct and results of the study.

Name of Investigator:	Dr Salah Mahmud
Affiliation /investigational center:	Associate Professor of Community Health Sciences, Canada Research Chair in Pharmaco-epidemiology and Vaccine Evaluation, University of Manitoba
Signature of Investigator:	
Date:	

For internal use only

MODULAR APPENDICES

List of modular appendices available for the study report and ICH-specific appendices - Study Information equivalent numbering.

Modular appendices	ICH numbering
Signatures of principal or coordinating investigator(s) or sponsor's responsible medical officer, depending on the regulatory authority's requirement	16.1.5

Annex 4 Report sign-off

Signature of Principal Investigator

GlaxoSmithKline Biologicals Vaccine Value and Health Science Investigator Approval Page

Please note that by signing this page, you take responsibility for the content of the Report, including appendices

STUDY TITLE: An observational retrospective database analysis to estimate the risk of Multiple Sclerosis (MS) following vaccination with ArepanrixTM in Manitoba, Canada

Study: 200405 (EPI-FLU H1N1-014 VS)

Development Phase: NA

I have read this report and confirm that to the best of my knowledge it accurately describes the conduct and results of the study.

Name of Investigator:	Dr Salah Mahmud	
Affiliation /investigational center:	Associate Professor of Community Health Science Canada Research Chair in Pharmaco-epidemiology and Vaccine Evaluation. Univer PPy of Manitoba	
Signature of Investigator:		
Date:	1 June 2016	

For internal use only