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A. Lay summary 

Inhaled corticosteroids (ICS) are anti-inflammatory medications commonly used as routine medications 

in asthma and chronic obstructive pulmonary disease (COPD). At the beginning of the COVID-19 

pandemic, it was thought that people with asthma or COPD might be at a higher risk of severe COVID-

19 but this was not observed early in the pandemic. It was not clear why, but it was suggested that lung 

disease, patients’ behaviour or their treatment may have a protective effect against severe COVID-19. 

In this study, we will examine the association between ICS use and SARS-CoV-2 infection, COVID-19 

hospital admission, and COVID-19 death among people who have either asthma or COPD. We will also 

examine, using a set of methods called quantitative bias analysis, how systematic biases may have 

affected any observed association between ICS use and COVID-19 outcomes. This could include 

addressing errors relating to e.g., undetected COVID-19 cases, or systematic differences between 

patients who were prescribed ICS and those who were not.  

This project will help understand the role of ICS in COVID-19 and the systematic biases that can affect 

observational studies of medications and COVID-19. This will in turn help researchers to conduct more 

reliable observational studies, and more robust results and interpretations of observational drug studies 

during a pandemic. 

B. Technical summary 

Inhaled corticosteroids (ICS) are anti-inflammatory drugs widely used as regular maintenance 

medications in asthma and chronic obstructive pulmonary disease (COPD). At the beginning of the 

COVID-19 pandemic, there was interest in ICS as potential disease-modifying drugs in COVID-19. 

Several observational studies investigated the effects of ICS on COVID-19 outcomes but found 

inconsistent results that may be affected by biases. 

The aim of this study is to investigate the effects of ICS at different stages of the COVID-19 disease 

pathway among patients with asthma or COPD, and apply methods of quantitative bias analysis (QBA) 

to these effect estimates to account for potential biases arising in these estimates of association. 

This study will use cohorts of patients with asthma and COPD, respectively, to investigate the 

association between ICS use compared to use of a non-ICS active comparator and SARS-CoV-2 

infection, COVID-19 hospitalisation, and COVID-19 death. All analyses will be conducted separately for 

an asthma and COPD cohort, and for the first and second wave of COVID-19. CPRD data will be linked 

to HES data to determine COVID-19 related hospitalisations, and to the ONS death registry to 

determine COVID-19 related deaths. The association between ICS prescription and each outcome will 

be estimated using a Cox regression model to calculate hazard ratios and 95% confidence intervals, 

with confounding adjustment using multivariable regression and propensity scores. Subsequently, QBA 

will be used to account for potential sources of bias in these estimates of association, including 

exposure and outcome misclassification, residual confounding and selection bias. 



This project will allow an evaluation of whether and how more widespread use of QBA might have 

allowed researchers to make better inferences using observational data about the role of ICS in COVID-

19. Outputs from this project will provide recommendations and tools to help researchers implement 

QBA in pharmacoepidemiologic studies.  



C. Background 

ICS are anti-inflammatory drugs widely used as regular maintenance medications in asthma and chronic 

obstructive pulmonary disease (COPD). At the beginning of the COVID-19 pandemic, it was thought 

that people with asthma or COPD might be at higher risk of adverse COVID-19 related outcomes.1,2 

However, patients with asthma or COPD were not substantially overrepresented among COVID-19 

deaths or hospitalisations.3–5 It was not clear why, but it was suggested that lung disease, patients’ 

behaviour or their treatment may have a protective effect.5–8  

Several observational studies investigated the effects of ICS on COVID-19 outcomes but found 

inconsistent results that may be affected by biases.9–13 A cohort study using the OpenSAFELY platform9 

found moderately increased risks for COVID-19-related mortality among people with asthma who using 

high-dose ICS (compared with short-acting beta-agonist only: adjusted hazard ratio (aHR) 1.55 (1.10–

2.18)). No increased risk was found among people with asthma using low or medium-dose ICS (aHR 

1.14 (0.85–1.54)). In the COPD cohort, an increased risk of death was found among people using ICS-

long-acting beta-agonist (LABA) compared with those using LABA-long-acting muscarinic antagonists 

(LAMA) (aHR 1.39 (1.10–1.76)). E-values were used to estimate the association an unmeasured 

confounder would need to have with exposure or outcome to fully explain the result and showed that 

the observed harmful associations could plausibly be explained by confounding.9 Bloom et al. found 

that among hospitalised people with COVID-19, patients over 50 years old with asthma using ICS had 

a reduced risk of death compared to people without respiratory disease (HR 0.86, 95% CI 0.80-0.92).10 

For younger patients with asthma (16-49 years), risk of death was significantly increased only for those 

with most severe asthma. Among those with COPD, both those with and without routine ICS use had 

an increased risk of death with COVID-19 compared to patients without respiratory disease (no ICS: 

HR 1.16, 95% CI 1.12−1.22; using ICS: HR 1.10, 95% CI 1.04−1.16).10 A study using the Danish 

national registries found no statistically significant differences in COVID-19 outcomes between 

hospitalised patients routinely using ICS, patients using other inhaled pharmaceuticals (β2-agonist 

and/or muscarinic receptor antagonists), and all patients without ICS use (30-day hazard of death of 

ICS users compared with users of other inhaled pharmaceuticals (HR 0.84, 95% CI 0.54-1.31)).12 

Aveyard et al. found that routine users of ICS were at modestly increased risk of severe COVID-19 

outcomes adjusted for respiratory disease and other comorbidities (aHR for hospitalisation 1.13, 95% 

CI 1.03-1.23, aHR for death 1.15, 95% CI 1.01-1.31) compared to the general population not using 

ICS.13  

Additionally, two randomised controlled trials (RCTs) have found beneficial effects of inhaled 

budesonide on recovery times in patients with symptomatic COVID-1914,15, while RCTs investigating 

ciclesonide have found conflicting results, with one study finding shortened duration of viral shedding16 

and two studies finding no statistically significant effect of ciclesonide on symptom resolution on day 717 

or time to symptom alleviation18. RCTs consequently suggested a strong protective effect of one inhaled 

ICS, budesonide, in patients with mild COVID-19.14,15 The conflicting results between the RCTs and 

observational studies may be a result of different study questions and populations, or biases affecting 

the observational studies.  



The design of pharmacoepidemiologic studies in COVID-19 is complicated by the polyphasic nature of 

the disease, which means that different treatments may have different effects at different stages of the 

COVID-19 disease pathway from infection to hospitalisation and death.19 It can therefore be difficult to 

compare results between studies when there are differences in study design and differences in timing 

of drug administration, and the populations studied.19 However, the inconsistent findings may also be 

in part due to biases affecting the studies.  

QBA is a form of sensitivity analysis that aims to quantify and adjust for systematic errors and the 

uncertainty about these errors.20 An important benefit of using QBA is that it makes assumptions 

regarding the structure and impact of the bias explicit and reduces overconfidence in research 

findings.21–23 Despite having first been described decades ago.22,24–26 QBA has so far rarely been 

applied to epidemiologic studies26,27, which may in part be due to a lack of guidance on which methods 

to apply and how best to apply them.20,28,29 QBA can be applied to many types of biases that may arise 

in pharmacoepidemiologic studies, such as exposure and outcome misclassification, selection bias and 

confounding. For example, misclassification of drug exposures may arise in EHRs due to stockpiling of 

medication, patients not filling prescriptions, non-adherence, or underascertainment of in-hospital 

medication use. Using COVID-19 infection as an outcome may be subject to misclassification due to 

non-random testing and limited testing availability. Non-random testing may result in selection bias 

where testing is a condition of entry into the study population. Selection bias may also arise in the form 

of collider bias if study populations have been restricted to people experiencing an event such as 

COVID-19 testing or hospitalisation.30 

Confounding can occur as confounding by indication when clinical indication influences the exposure, 

i.e., treatment, and the outcome under investigation. While using an active comparator can reduce 

confounding by indication, there is no perfect active comparator in asthma or COPD, and the reasons 

for choosing a specific treatment regimen are not always known. 

Studies investigating the impact of ICS on COVID-19 outcomes have so far given conflicting results. 

ICS may have different effects at different stages of the COVID-19 disease pathway from infection to 

hospitalisation and death. It can therefore be difficult to compare results between studies when there 

are differences in study design and differences in timing of drug administration, and the populations 

studied.19 However, the inconsistent findings may also be in part due to biases affecting the studies, 

including for example bias due to imperfect and incomplete ascertainment of SARS-CoV-2 infections 

or misclassification of ICS exposures. This study will use ICS as a “case study” to investigate the 

application of QBA in pharmacoepidemiologic studies of COVID-19. 

 

  



D. Aims, objectives, rationale 

The aim of this study is to investigate the effects of ICS at different stages of the COVID-19 disease 

pathway (i.e., infection, hospitalisation, and death) among patients with asthma or COPD and apply 

methods of QBA to these effect estimates to account for potential biases arising in these estimates of 

association. The null hypothesis is that use of ICS has no effect on COVID-19-related outcomes. 

 

Objectives 

A. To describe prescription patterns of ICS among patients with respiratory diseases before and 

during the COVID-19 pandemic. 

B. To investigate the association between prevalent ICS use and COVID-19 related outcomes 

among patients with respiratory diseases. 

a. Estimate the association between prevalent ICS use and risk of having a positive 

SARS-CoV-2 test. 

b. Estimate the association between prevalent ICS use and risk of hospitalization with 

COVID-19 among patients with a positive SARS-CoV-2 test. 

c. Estimate the association between prevalent ICS use and risk of death among patients 

who were hospitalized with COVID-19. 

C. To develop approaches and apply methods of QBA to account for potential biases arising in 

these estimates of association. 

a. Investigate impact of exposure misclassification (e.g., due to stockpiling of medication, 

patients not filling prescription or underascertainment of in-hospital medication use) on 

estimates from objective 2a, 2b, and 2c. 

b. Quantify potential biases due to unmeasured or unknown confounders on estimates 

from objective 2a, 2b, and 2c. 

c. Investigate impact of outcome misclassification (e.g., underascertainment of infections 

due to limited testing availability and non-random testing) on estimates from objective 

2a.  

d. Investigate impact of selection bias (e.g., non-random selection of individuals into a 

study) on estimates from objective 2b and 2c.  

 

E. Outcomes 

COVID-19 positive test result; hospitalisation with COVID-19; death with COVID-19, as defined in 

section N. 

F. Study type 

The overall study design is a historical cohort study. 



G. Study design 

Objective 1 will be a descriptive study with a population-level description of prescription patterns of ICS 

before and during the COVID-19 pandemic among patients with respiratory disease. 

Objective 2 will be a hypothesis testing cohort study. The null hypothesis is that there is no association 

between ICS use and testing positive for COVID-19, hospitalisation for COVID-19 and death with 

COVID-19. 

Objective 3 will be a methodological study to develop and apply methods of quantitative bias analysis 

to account for potential biases arising in the estimates of the effects of ICS on COVID-19 outcomes. 

H. Data source 

This project will use the Clinical Practice Research Datalink (CPRD) Aurum, a database containing 

routinely collected patient data from GPs in the UK. CPRD Aurum includes data on 41 million patients 

(March 2022), with over 13 million patients currently registered (20% of the UK population).31 These 

patients come from over 1,300 GP practices which use EMIS GP patient management software.31 

CPRD records information on diagnoses, symptoms, demographics and lifestyle factors, prescriptions, 

referrals, vaccinations and tests31,32, coded using SNOMED and Dictionary of Medicines and Devices 

(DM+D) codes. CPRD Aurum has been shown to be broadly representative of the English population 

in terms of age, gender, geographical spread and deprivation.32  

I. Linked data 

Data from CPRD can be linked to other databases such as the Hospital Episode Statistics (HES) and 

the Office for National Statistics (ONS) death registry. Both HES and ONS death registry data are linked 

to CPRD by NHS Digital using the NHS number, gender, date of birth and postcode.32,33 HES holds 

information on all patient contacts at NHS hospitals in England, with diagnoses recorded using 

International Classification of Disease 10th revision (ICD-10) codes.33,34 ONS death registry data 

contains information on all deaths occurring in England and Wales, including a cause of death 

documented using ICD-10 codes.34,35 

HES Admitted Patient Care will be used to identify hospitalisation with COVID-19. ONS death 

registration data will be used to identify death with COVID-19. Additionally, the Index of Multiple 

Deprivation (IMD) will be used as a covariate to adjust for socioeconomic deprivation, which has been 

associated with COVID-19 outcomes.36 

J. Feasibility counts 

A feasibility count based on CPRD Aurum June 2021 build identified 225,472 patients with a COPD 

code before 29th February 2020, and 755,632 patients with an asthma code between 1st March 2017 

and 29th February 2020. These patients were registered in CPRD on 1st March 2020 and had at least 

one year of registration prior to that date. 



Furthermore, 1,031,882 patients who received a prescription for ICS between 01st March 2019 and 29th 

February 2020 were identified. Of the patients with asthma, 485,192 had a prescription for ICS. Of the 

patients with COPD, 83,668 had a prescription for ICS. 

 

 

 

 

K. Sample size considerations 

Between 01st March 2020 and 31st August 2020, 295,134 positive SARS-CoV-2 tests were reported in 

England.37 Based on a population of 56,550,00038, that corresponds to 0.52% of the population testing 

positive for SARS-CoV-2. During that time period, 36,974 deaths with COVID-19 occurred in England, 

corresponding to 0.065% of the population. 

Table 1. Sample size calculations for α = 0.05 and 80% power, assuming 64% of the study population are 
prescribed ICS. 

Outcome probability 

in controls 
HR=1.1 HR=1.2 HR=1.3 HR=1.4 HR=1.5 HR=1.6 HR=1.7 

0.05% 7,500,266 2,049,648 989,797 601,807 414,428 308,428 241,978 

0.1% 3,750,133 1,024,824 494,899 300,904 207,214 154,214 120,989 

0.2% 1,875,067 512,412 247,450 150,452 103,607 77,107 60,495 

0.3% 1,250,045 341,608 164,967 100,302 69,072 51,405 40,330 

0.4% 937,534 256,206 123,725 75,226 51,804 38,554 30,248 

0.5% 750,027 204,965 98,980 60,181 41,443 30,843 24,198 

0.6% 625,023 170,804 82,484 50,151 34,536 25,703 20,165 

0.7% 535,734 146,404 70,700 42,987 29,602 22,031 17,285 

0.8% 468,767 128,103 61,863 37,613 25,902 19,277 15,124 

0.9% 416,682 113,870 54,989 33,434 23,024 17,135 13,444 

1.0% 375,014 102,483 49,490 30,091 20,722 15,422 12,099 

Assuming the probability of testing positive for SARS-CoV-2 among people with asthma or COPD is 

equal to or higher than the probability of testing positive among the general population, this study will 

likely be adequately powered to detect HRs of 1.1 or higher in the asthma population and 1.2 or higher 

in the COPD population for the outcome of testing positive. For the rarest outcome, death, the study 

would be powered to detect HRs higher than 1.4 in the asthma cohort and 1.7 in the COPD cohort. 

L. Study population 

Descriptive study  

For the descriptive study, we will examine prescription patterns of ICS in two cohorts: patients with 

COPD and patients with asthma. Follow-up will be from 1st March 2019 until the end of wave 2 of 

COVID-19 in the UK (30th April 2021). 

  With ICS prescription 01/03/2019-29/02/2020 

Asthma 755,632 485,192 (64.2%) 

COPD 225,472 83,668 (37.1%) 



For each cohort and each calendar month, the study population will consist of people who have a record 

of asthma or COPD. For the asthma cohorts, each monthly cohort will consist of those patients who, on 

the 15th of each month (the index date), had 1) their first asthma code on or before that date; and 2) did 

not have COPD on or before that date.39 Correspondingly, for the COPD cohorts, each monthly cohort 

will consist of those patients who, on the 15th of each month, had 1) their first COPD code on or before 

that date; and 2) did not have asthma on or within 3 years before that date. To be included in a cohort, 

patients must have at least one year of follow-up in CPRD prior to the index date and have age and 

gender recorded in CPRD. 

Comparative cohort studies 

For the comparative cohort studies, the study population will consist of two separate, mutually exclusive 

disease cohorts, a COPD cohort and an asthma cohort, consisting of patients registered with GP 

practices meeting CPRD quality control standards. For each disease cohort (asthma and COPD), two 

cohorts will be created, one for the first wave of COVID-19 and one for the second, defined relative to 

a cohort entry date (1st March 2020 for wave 1, 1st September 2020 for wave 2), to make a total of four 

cohorts. To be included in a cohort, patients must have at least one year of follow-up in CPRD prior to 

the cohort entry date, be eligible for linkage to HES data, and have gender and age recorded in CPRD. 

Asthma cohort40 

The asthma cohort will include all adults aged 18 and over with a recorded diagnosis of asthma defined 

as a record of asthma within 3 years prior to the cohort entry date. This method of identifying asthma 

has previously been validated in CPRD.40 Code lists to identify asthma will be reviewed by a clinical 

expert before use. 

Patients will be excluded if they have a record of COPD or any other chronic respiratory condition at 

any point before the cohort entry date, or a prescription of a LAMA but no ICS within 3 years before the 

cohort entry date, as this indicates possible COPD. Patients who received a prescription of nebulised 

medication within 1 year before the cohort entry date will also be excluded, as this indicates very severe 

asthma. 

COPD cohort41 

The COPD cohort will include all adults aged 35 and over with a recorded diagnosis of COPD at any 

point before the cohort entry date.41 This method of identifying COPD has previously been validated in 

CPRD.41 Code lists to identify COPD will be reviewed by a clinical expert before use. To be included, 

patients must also have a record of current or former smoking in CPRD. 

As in the asthma cohort, patients who have a record of other chronic respiratory conditions at any point 

before the cohort entry date will be excluded. People who use a leukotriene receptor antagonist (LTRA) 

within 3 years of the cohort entry date will be excluded as this indicates asthma, as will people who are 

prescribed a LABA/LAMA and ICS within 3 months before the cohort entry date, as this indicates severe 

COPD. 

Censoring 



For all cohorts, cohort exit will be defined as the first of either occurrence of the outcome (for each 

analysis), death, disenrollment from GP practice, the last date of data availability, or the end of the 

COVID-19 wave (31st August 2020 for wave 1, 30th April 2021 for wave 2). 

M. Comparator groups 

The study will use an active comparator group including all people with recorded asthma within 3 years 

or COPD at any point before the cohort entry date (1st March 2020 or 1st September 2020, respectively) 

who received a prescription for inhaled medication for asthma or COPD, but no ICS prescription.  

The comparator group for the asthma cohort will be people who were not prescribed medication 

containing ICS and were prescribed a non-ICS inhaled medication for asthma. For the COPD cohort, 

the comparator group will include people who were not prescribed a medication containing ICS and 

were prescribed a LABA/LAMA separately or in combination for COPD. Exposures and exposure 

durations in the comparator group will be calculated in the same way as in the ICS-exposed group.  

N. Exposures, outcomes and covariates 

Exposure 

Exposure will be prescription of ICS, which may be determined in a time-fixed or time-updated manner. 

Which method of exposure ascertainment will be chosen will be informed by the findings of the 

descriptive study of prescription patterns. For example, if we observe a significant increase in 

prescriptions for ICS at the start of the pandemic (March 2020) in the descriptive study, suggesting 

stockpiling occurred, it may be difficult to ascertain the end of an exposure period. While a time-updated 

approach would be more accurate and preferable in theory, a time-fixed exposure definition may be 

preferable if exposure periods cannot be estimated with confidence, for example due to stockpiling. The 

descriptive study will be completed before the start of the analyses of the comparative studies.  

 

• Time-fixed exposure: prescription of ICS within 3 months before the cohort entry date (1st 

March 2020 for wave 1, 1st September 2020 for wave 2), and the comparator group as people 

who did not receive a prescription for ICS within the 3 months before the cohort entry date, but 

did receive a prescription for another inhaled medication for COPD or asthma. Patients can 

then not switch between exposure groups, even if they initiate ICS or their ICS exposure ends, 

analogous to an “intention to treat” approach.  

• Time-updated exposure: ICS prescriptions in the year before the cohort entry date up until 

the end of follow-up will be used to ascertain exposure status throughout the follow-up time. 

Length of exposure for each prescription will be calculated by multiplying the quantity by any 

relevant dose information stored in the packtype variable and dividing by the value in the 

numeric daily dose variable. Where it is not possible to calculate the exposure period, the 

median prescription length for that drug might be imputed as the exposure duration.42 An 

allowable gap between the end of a calculated drug supply and receipt of a new prescription 

would be permitted, e.g. half a median exposure duration. Where one prescription is issued 



before the previous one is estimated to have been completely used, we will assume stockpiling 

occurred and assign the maximum total days of exposure possible with the combined 

prescriptions. Patients who switch treatment groups will be considered exposed to the active 

comparator/ICS group from the date of the switch, and those who discontinue treatment or 

switch to a treatment not under study will be censored at discontinuation or switch.  

 

Patients will be considered exposed from the date the prescription was issued, as ICS have been shown 

to exert anti-inflammatory effects within hours of administration.43 

Outcomes 

• SARS-CoV-2 infection, defined as a recorded positive test for SARS-CoV-2 in the primary care 

record sourced from the Second Generation Surveillance System (SGSS).  

• hospitalisation with COVID-19, defined as admission to hospital with an ICD-10 code for 

COVID-19, ascertained using HES data. 

• death with COVID-19, defined as death with an ICD-10 code for COVID-19 listed as an 

underlying or contributing cause of death in the ONS death registry.  

Covariates 

• demographic and lifestyle variables at baseline: age, sex, body mass index (BMI), smoking 

status, ethnicity, socioeconomic status (Index of Multiple Deprivation, IMD) 

• ever-present comorbidities at baseline: chronic kidney disease, hypertension, heart failure, 

other heart diseases, diabetes, cancer, immunosuppression 

• time-updated covariates: influenza vaccination within one year before the cohort entry date, 

pneumococcal vaccination within 5 years before the cohort entry date, vaccination against 

COVID-19 (wave 2 only) 

• calendar time, COVID-19 prevalence figures (ONS) 

• asthma cohort only: number of recorded asthma exacerbations (emergency department visit, 

hospitalisation or prescription of an oral corticosteroid for asthma44) within 1 year before the 

cohort entry date  

• COPD cohort only: number of recorded COPD exacerbations (defined using a validated 

algorithm45) within 1 year before the cohort entry date. 

O. Data analysis 

Descriptive study: 

Population-level measures of ICS use that will be determined per calendar month are: 

• Number and proportion of incident and prevalent users over the course of follow-up for each 

calendar month:  

o Prevalent ICS exposure will include people with an ICS prescription recorded on any 

day during that month.  



o Incident ICS exposure will be defined as a new ICS prescription with no prescription in 

the previous 6 months. Prevalent users will therefore also include incident users.  

o The denominator will be all people with asthma or COPD in each monthError! 

Reference source not found.. 

• Number of individual prescriptions per person per month (absolute number). 

• Dosages prescribed: median or mean daily dose among those prescribed ICS for any given 

month.  

• Discontinuation of ICS or date of treatment switch: number and proportion of people who have 

≥6 months of no ICS-containing inhaler prescription. 

This study will be descriptive. Results will be presented as absolute numbers and proportions as bar 

graphs. 

The results from this study will inform the exposure definition that will be used in the comparative cohort 

study (see section on Exposure definitions). This study will be completed before starting the analyses 

for the subsequent comparative cohort studies.  

Comparative cohort studies: 

We will conduct descriptive analyses (frequency, percentages, mean [SD] and median [IQR]) to assess 

characteristics of the patients in each cohort, stratified by exposure group at baseline. Categorical 

variables will be compared using χ2 tests. Continuous variables will be compared using t-tests for 

normally distributed variables and Mann-Whitney test for non-normally distributed variables. Time to 

each outcome will be presented using Kaplan-Meier plots using time in study as the time scale. 

Propensity scores will be generated using logistic regression to estimate likelihood of ICS prescription 

based on baseline characteristics. All pre-specified covariates will be included in the logistic regression.  

The association between ICS prescription and each outcome will be estimated using a Cox regression 

model to calculate hazard ratios and 95% CIs, using time in study as the time scale. Univariable models, 

models adjusted for age and sex, and propensity score weighted models will be presented. Schoenfeld 

residuals will be used to graphically assess the validity of the proportional hazards assumption. If the 

proportional hazards assumption is violated, we will use interaction terms between the exposure and 

time to describe any variations in the hazard ratio over time.  

If a time-updated exposure definition is used, we will account for potentially informative censoring using 

inverse-probability of censoring weights. Propensity scores will also be time-updated to account for 

time-dependent confounding. 

A number of sensitivity analyses/additional analyses will be conducted: 

o Stratification by ICS dose (low/medium vs higher) 

o Do not condition on positive test (2b) or hospitalisation (2c), in order to repeat published 

analyses  



o Include people with a diagnostic code for COVID-19, or a code that implied SARS-CoV-

2 infection, but no registered positive SARS-CoV-2 test 

P. Quantitative Bias Analysis 

Quantitative Bias Analysis Method: 

We will use probabilistic bias analysis to quantify the effect of biases on the effect estimates in objectives 

2a-c. In probabilistic bias analysis, each bias parameter is assigned a distribution which reflects the 

uncertainty around the specific value for the parameter. The bias parameters are sampled repeatedly 

from this distribution and applied to the observed effect measure to obtain a bias-adjusted point estimate 

and simulation interval.22,46 For research questions where more than one bias may have a significant 

impact, we will also conduct multiple bias modelling to obtain effect estimates that are adjusted for 

several biases. 

Misclassification: 

We will use a range of plausible values for sensitivity and specificity of the outcome and exposure 

classification to adjust for outcome and exposure misclassification, respectively.  

Exposure misclassification may arise due to low adherence to inhaled medication for respiratory 

diseases47–49, and due to stockpiling of medication at the beginning of the pandemic (March and April 

2020). The descriptive cohort study (objective 1) will investigate prescription patterns and the potential 

extent of stockpiling during the pandemic. To adjust for potential exposure misclassification, we will 

calculate proxy measures for adherence (proportion of days covered or medication possession ratio) in 

the year before the COVID-19 pandemic (March 2019 – February 2020) and use these, together with 

data from literature and input from clinicians, to estimate adherence during the pandemic. Additionally, 

we are looking to obtain questionnaire data on adherence during the pandemic from the Optimum 

Patient Care Research Database (OPCRD). If this data is not obtained, or is not suitable for these 

purposes, we will estimate exposure misclassification using data from literature and input from 

clinicians.  

In objective 2a, the outcome of SARS-CoV-2 infection may be misclassified as testing was conducted 

in a non-random manner. Especially in the first wave of COVID-19, testing was very limited, and 

therefore not all infections will have been ascertained. It is plausible that the probability of getting tested 

for SARS-CoV-2 was not equal among people prescribed ICS and those not prescribed ICS, resulting 

in differential misclassification of SARS-CoV-2 infection. We will use test data from CPRD and data 

from the ONS infection survey to estimate how many SARS-CoV-2 infections may have been missed 

in the respective study populations. We will work together with clinicians to create plausible bounds for 

sensitivity and specificity of the outcome classification. 

Selection Bias: 

Analyses that are restricted to people who received a positive test for SARS-CoV-2 or were hospitalised 

with COVID-19 may be vulnerable to selection bias. Potential differential misclassification of SARS-

CoV-2 infections in objective 2a would result in selection bias in objective 2b, as selection into the study 



population is conditional on a positive test for SARS-CoV-2. In order to adjust for selection bias, the 

bias parameters necessary are the selection probabilities S for each combination of exposure E and 

outcome D: 

• Probability of being selected into the study conditional on being exposed and experiencing the 

outcome (P(S|D=1, E=1)),  

• Probability of being selected conditional on being exposed and not experiencing the outcome 

(P(S|D=0, E=1)),  

• Probability of being selected conditional on being unexposed and experiencing the outcome 

(P(S|D=1, E=0)),  

• Probability of being selected conditional on being unexposed and not experiencing the outcome 

(P(S|D=0, E=0)).  

The observed effect estimate can then be multiplied with the OR for differential selection to give an 

effect estimate adjusted for differential selection into the study population. To estimate the impact of 

possible selection bias affecting effect estimates in objective 2b, we will use information relating to the 

underascertainment of SARS-CoV-2 infections, described above. To account for selection bias in 

objective 2c, we will use HES data, together with data on ICS exposure from CPRD and data on the 

outcome, death with COVID-19, from the ONS death registry, to determine probabilities for being 

selected into the study population (i.e., being hospitalised with COVID-19) for each combination of 

exposure and outcome. 

Confounding: 

We expect that there will be unmeasured confounding affecting the effect estimates in objectives 2a-c. 

A likely key source of unmeasured confounding may be the severity of the underlying respiratory 

disease. It has not been elucidated completely how asthma and COPD affect COVID-19 outcomes7,50–

55, but it is plausible that severity of respiratory disease influenced COVID-19 outcomes and that people 

using ICS had a different severity of underlying respiratory disease than those not prescribed ICS. Any 

observed effect of ICS on COVID-19 outcomes may then be partly due to different severity of respiratory 

disease between the exposed and unexposed. We will account for unmeasured confounding by 

respiratory disease severity using an estimate of the association between severe respiratory disease 

and the outcome among the unexposed, an estimate of the association between severe respiratory 

disease and ICS exposure, and the prevalence of severe respiratory disease among the source 

population.23,56 We will work together with clinicians to develop an algorithm to identify severe 

respiratory disease in CPRD and/or estimate plausible bounds. 

Q. Plans for addressing confounding 

The distribution of confounders will be compared descriptively between users and non-users of ICS. 

We will use multivariable regression, and propensity scores where appropriate, to adjust for 

confounding. Covariates used to estimate the propensity score will be selected based on literature and 

are listed in section N. If a time-updated exposure definition is used, we will generate time-updated 

confounders.  



We will use quantitative bias analysis to quantify the extent to which unmeasured confounding could 

bias our studies.    

R. Missing data 

We expect some missing covariate information for BMI, smoking status, and ethnicity. Missing data on 

ethnicity will be supplemented using HES data.57 The characteristics of individuals with and without 

missing data will be compared to identify systematic differences which may bias the results. The primary 

analysis will be conducted excluding variables with a considerable number of missing values (>10%). 

We will consider using multiple imputation or complete records analysis for variables that may be 

important confounders, depending on the degree of missingness. 

S. Patient and user group involvement 

We are exploring ways to obtain patient input to contextualise the experiences of people with asthma 

or COPD during the pandemic, in particular how they may have used or stockpiled prescriptions of ICS 

in waves 1 and 2. 

T. Limitations 

An aim of this project is to address some of the limitations of observational research using QBA. Many 

of the limitations that may affect this study of ICS and COVID-19 outcomes, such as incomplete 

ascertainment of SARS-CoV-2 infections, unmeasured confounding, and collider bias, will be 

addressed using QBA. The source and uncertainty about the bias parameters may not always be known 

and will likely involve a combination of extrapolation from published literature, estimates from other 

studies, and detailed discussion with a respiratory clinician. For this reason, we will explore a range of 

values for each bias parameter.  

The data source has some missing covariate information. We will exclude covariates with large amounts 

of missing values from the primary analysis and will consider conducting a sensitivity analysis including 

those variables using multiple imputation or complete records analysis, depending on the degree of 

missingness. Furthermore, quantitative bias analysis will be used to assess the extent to which 

unmeasured confounders may impact study results.  

An additional limitation is that the study may be underpowered to detect small effects (HRs <1.2) if the 

outcome is very rare (<0.5%). 

U. Plans for dissemination and communication of study results 

Results will be presented at conferences (e.g. ICPE, SER) and submitted for publication in peer-

reviewed journals (e.g. Lancet Respir. Med, Pharmacoepidemiology and Drug Safety). 



V. Data Storage and Security 

The data will be stored on a secure data server, within the London School of Hygiene and Tropical 

Medicine network. Access will be restricted to named users with specific involvement in the project.  

The analysis dataset including those variables (exposures, outcomes, covariates) justified in the 

protocol and used for the analysis as outlined in the protocol will be archived on an Electronic Health 

Records Research Group drive on the LSHTM school network. 

Data will remain on the secure server for the duration of the project, or until the end of the data retention 

period stipulated by the data owners. After this time, all data will be destroyed following the CPRD 

guidelines using dedicated software. 

Analysis code will be uploaded on GitHub.  
 

W. Ethics approvals 

The data used in this project are routinely collected and anonymised data from the Clinical Practice 

Research Datalink (CPRD). The CPRD Group has in place ethical approval from a National Research 

Ethics Service Committee (NRES) for all purely observational research using anonymised CPRD data; 

namely, studies which do not include patient involvement (including this study, see 

https://www.cprd.com/content/guidance-completion-cprd-research-data-governance-rdg-application). 

The current project (which does not include patient involvement) does fall within the overall scope of 

existing CPRD approvals. However, all projects using CPRD data have to obtain additional approval 

from the CPRD Research Data Governance (RDG). CPRD RDG committees review protocols for 

feasibility, public health benefits/risks and information governance risks. A scientific proposal has been 

submitted to the CPRD RDG and approved by CPRD Research Data Governance (CPRD reference 

22_001876). 

Additionally, the project has been approved by London School of Hygiene and Tropical Medicine Ethics 

Committee (Project ID: 27896). 

X. Expected timelines 

Start of funding: 19/04/2021 

Registration in EU PAS register: 11/07/2022 

Start of data collection/extraction: 01/09/2022 

Start of data management: 01/09/2022 

Start of data analysis: 02/01/2023 

Final study report: 31/10/2024 

https://www.cprd.com/content/guidance-completion-cprd-research-data-governance-rdg-application


Y. Conflicts of Interest 

MB is funded by a GlaxoSmithKline PhD studentship to investigate the application of quantitative bias 

analysis in observational studies of COVID-19. ID has unrestricted grants from and shares in GSK. AS 

is employed by LSHTM on a fellowship sponsored by GSK. JH is employed by GSK and owns stock in 

GSK. CTR and JQ report no conflicts of interest.  

Z. References 

1. Singh D, Halpin DMG. Inhaled corticosteroids and COVID-19-related mortality: confounding or 
clarifying? The Lancet Respiratory Medicine. 2020;8(11):1065. doi:10.1016/S2213-
2600(20)30447-1 

2. Hartmann-Boyce J, Gunnell J, Drake J, et al. Asthma and COVID-19: review of evidence on risks 
and management considerations. BMJ Evidence-Based Medicine. 2021;26(4):195-195. 
doi:10.1136/bmjebm-2020-111506 

3. Global Initiative for Asthma. Global Strategy for Asthma Management and Prevention (2021 
Update). Global Initiative for Asthma; 2021:1-217. 

4. Shi L, Xu J, Xiao W, et al. Asthma in patients with coronavirus disease 2019: A systematic review 
and meta-analysis. Annals of Allergy, Asthma and Immunology. 2021;126(5):524-534. 
doi:10.1016/j.anai.2021.02.013 

5. Sunjaya AP, Allida SM, Luca Di Tanna G, Jenkins C, Di Tanna GL, Jenkins C. Asthma and risk 
of infection, hospitalization, ICU admission and mortality from COVID-19: Systematic review and 
meta-analysis. Journal of Asthma. Published online 2021. doi:10.1080/02770903.2021.1888116 

6. Halpin DMG, Singh D, Hadfield RM. Inhaled corticosteroids and COVID-19: A systematic review 
and clinical perspective. European Respiratory Journal. 2020;55(5). 
doi:10.1183/13993003.01009-2020 

7. Lombardi C, Gani F, Berti A, Comberiati P, Peroni D, Cottini M. Asthma and COVID-19: a 
dangerous liaison? Asthma Research and Practice 2021 7:1. 2021;7(1):1-14. 
doi:10.1186/S40733-021-00075-Z 

8. Halpin DMG, Faner R, Sibila O, Badia JR, Agusti A. Do chronic respiratory diseases or their 
treatment affect the risk of SARS-CoV-2 infection? The Lancet Respiratory Medicine. 
2020;8(5):436-438. doi:10.1016/S2213-2600(20)30167-3 

9. Schultze A, Walker AJ, MacKenna B, et al. Risk of COVID-19-related death among patients with 
chronic obstructive pulmonary disease or asthma prescribed inhaled corticosteroids: an 
observational cohort study using the OpenSAFELY platform. The Lancet Respiratory medicine. 
2020;8(11):1106-1120. doi:https://dx.doi.org/10.1016/S2213-2600(20)30415-X 

10. Bloom CI, Drake TM, Docherty AB, et al. Risk of adverse outcomes in patients with underlying 
respiratory conditions admitted to hospital with COVID-19: a national, multicentre prospective 
cohort study using the ISARIC WHO Clinical Characterisation Protocol UK. The Lancet 
Respiratory Medicine. 2021;9(7):699-711. doi:10.1016/S2213-2600(21)00013-8 

11. Choi JC, Jung SY, Yoon UA, et al. Inhaled Corticosteroids and COVID-19 Risk and Mortality: A 
Nationwide Cohort Study. Journal of Clinical Medicine. 2020;9(11):3406. 
doi:10.3390/jcm9113406 

12. Husby A, Pottegård A, Hviid A. Association between inhaled corticosteroid use and COVID-19 
outcomes. Pharmacoepidemiology and drug safety. Published online August 14, 2021:pds.5345. 
doi:10.1002/pds.5345 



13. Aveyard P, Gao M, Lindson N, et al. Association between pre-existing respiratory disease and its 
treatment, and severe COVID-19: a population cohort study. The Lancet Respiratory Medicine. 
2021;9(8):909-923. doi:10.1016/S2213-2600(21)00095-3 

14. Ramakrishnan S, Nicolau DV, Langford B, et al. Inhaled budesonide in the treatment of early 
COVID-19 (STOIC): a phase 2, open-label, randomised controlled trial. The Lancet Respiratory 
Medicine. 2021;0(0). doi:10.1016/S2213-2600(21)00160-0 

15. Yu LM, Bafadhel M, Dorward J, et al. Inhaled budesonide for COVID-19 in people at high risk of 
complications in the community in the UK (PRINCIPLE): a randomised, controlled, open-label, 
adaptive platform trial. The Lancet. 2021;398(10303):843-855. doi:10.1016/S0140-
6736(21)01744-X 

16. Song JY, Yoon JG, Seo YB, et al. Ciclesonide Inhaler Treatment for Mild-to-Moderate COVID-19: 
A Randomized, Open-Label, Phase 2 Trial. Journal of Clinical Medicine. 2021;10(16):3545. 
doi:10.3390/jcm10163545 

17. Ezer N, Belga S, Daneman N, et al. Inhaled and intranasal ciclesonide for the treatment of covid-
19 in adult outpatients: CONTAIN phase II randomised controlled trial. BMJ. 2021;375:e068060. 
doi:10.1136/bmj-2021-068060 

18. Clemency BM, Varughese R, Gonzalez-Rojas Y, et al. Efficacy of Inhaled Ciclesonide for 
Outpatient Treatment of Adolescents and Adults With Symptomatic COVID-19: A Randomized 
Clinical Trial. JAMA Internal Medicine. Published online November 22, 2021. 
doi:10.1001/JAMAINTERNMED.2021.6759 

19. Jamilloux Y, Henry T, Belot A, et al. Should we stimulate or suppress immune responses in 
COVID-19? Cytokine and anti-cytokine interventions. Autoimmunity Reviews. 2020;19(7):102567. 
doi:10.1016/J.AUTREV.2020.102567 

20. Lash TL, Fox MP, Maclehose RF, Maldonado G, Mccandless LC, Greenland S. Good practices 
for quantitative bias analysis. International Journal of Epidemiology. 2014;43(6):1969-1985. 
doi:10.1093/ije/dyu149 

21. Lash TL, Fink AK, Fox MP. Introduction, Objectives, and an Alternative. In: Applying Quantitative 
Bias Analysis to Epidemiologic Data. Springer, New York, NY; 2009:1-12. doi:10.1007/978-0-387-
87959-8_1 

22. Rothman KJ, Greenland S, Lash TL. Modern Epidemiology.; 2008. 

23. Lash TL, Fox MP, Fink AK. Applying Quantitative Bias Analysis to Epidemiologic Data. Springer 
New York; 2009. doi:10.1007/978-0-387-87959-8 

24. Lash TL, Ahern TP, Collin LJ, Fox MP, MacLehose RF. Bias Analysis Gone Bad. American journal 
of epidemiology. 2021;190(8):1604-1612. doi:10.1093/aje/kwab072 

25. Jurek AM, Maldonado G, Greenland S, Church TR. Exposure-measurement error is frequently 
ignored when interpreting epidemiologic study results. European Journal of Epidemiology 2006 
21:12. 2006;21(12):871-876. doi:10.1007/S10654-006-9083-0 

26. Petersen JM, Ranker LR, Barnard-Mayers R, MacLehose RF, Fox MP. A systematic review of 
quantitative bias analysis applied to epidemiological research. International Journal of 
Epidemiology. 2021;50(5):1708-1730. doi:10.1093/ije/dyab061 

27. Hunnicutt JN, Ulbricht CM, Chrysanthopoulou SA, Lapane KL. Probabilistic bias analysis in 
pharmacoepidemiology and comparative effectiveness research: a systematic review. 
Pharmacoepidemiology and Drug Safety. 2016;25(12):1343-1353. doi:10.1002/pds.4076 



28. Brakenhoff TB, Mitroiu M, Keogh RH, Moons KGM, Groenwold RHH, van Smeden M. 
Measurement error is often neglected in medical literature: a systematic review. Journal of Clinical 
Epidemiology. 2018;98:89-97. doi:10.1016/J.JCLINEPI.2018.02.023 

29. MacLehose RF, Werler MM. Importance of bias analysis in epidemiologic research. Paediatric 
and Perinatal Epidemiology. 2014;28(5):353-355. doi:10.1111/ppe.12147 

30. Griffith GJ, Morris TT, Tudball MJ, et al. Collider bias undermines our understanding of COVID-
19 disease risk and severity. Nature Communications. 2020;11(1):5749. doi:10.1038/s41467-
020-19478-2 

31. Clinical Practice Research Datalink. Release Notes: CPRD Aurum March 2022.; 2022. 
doi:10.48329/my9s-4x08 

32. Wolf A, Dedman D, Campbell J, et al. Data resource profile: Clinical Practice Research Datalink 
(CPRD) Aurum. International Journal of Epidemiology. 2019;48(6):1740-1740g. 
doi:10.1093/IJE/DYZ034 

33. Hospital Episode Statistics (HES) Admitted Patient Care and CPRD primary care data 
Documentation (set 21). Published online May 28, 2021. 

34. Clinical Practice Research Datalink. CPRD linked data | CPRD. Accessed December 9, 2021. 
https://www.cprd.com/linked-data#HES%20Admitted%20Patient%20Care%20data 

35. ONS death registration data and CPRD primary care data Documentation (set 21) Version 2.5. 
Published online 2021. 

36. Office for National Statistics. Deaths involving COVID-19 by local area and socioeconomic 
deprivation. Published May 1, 2020. Accessed June 28, 2022. 
https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/deaths/bullet
ins/deathsinvolvingcovid19bylocalareasanddeprivation/deathsoccurringbetween1marchand17ap
ril 

37. Cases in England | Coronavirus in the UK. Accessed March 27, 2022. 
https://coronavirus.data.gov.uk/details/cases?areaType=nation&areaName=England 

38. Population estimates for the UK, England and Wales, Scotland and Northern Ireland - Office for 
National Statistics. Accessed March 27, 2022. 
https://www.ons.gov.uk/peoplepopulationandcommunity/populationandmigration/populationesti
mates/bulletins/annualmidyearpopulationestimates/mid2020 

39. Bloom CI, Saglani S, Feary J, Jarvis D, Quint JK. Changing prevalence of current asthma and 
inhaled corticosteroid treatment in the UK: population-based cohort 2006-2016. The European 
respiratory journal. 2019;53(4). doi:10.1183/13993003.02130-2018 

40. Nissen F, Morales DR, Mullerova H, Smeeth L, Douglas IJ, Quint JK. Validation of asthma 
recording in the Clinical Practice Research Datalink (CPRD). BMJ open. 2017;7(8). 
doi:10.1136/BMJOPEN-2017-017474 

41. Quint JK, Müllerova H, DiSantostefano RL, et al. Validation of chronic obstructive pulmonary 
disease recording in the Clinical Practice Research Datalink (CPRD-GOLD). BMJ Open. 
2014;4(7):e005540. doi:10.1136/BMJOPEN-2014-005540/-/DC1 

42. Wing K, Williamson E, Carpenter JR, et al. Medications for chronic obstructive pulmonary disease: 
a historical non-interventional cohort study with validation against RCT results. Health technology 
assessment (Winchester, England). 2021;25(51):1-70. doi:10.3310/hta25510 

43. Barnes PJ. Inhaled Corticosteroids. Pharmaceuticals (Basel). 2010;3(3):514-540. 
doi:10.3390/ph3030514 



44. Bloom CI, Nissen F, Douglas IJ, Smeeth L, Cullinan P, Quint JK. Exacerbation risk and 
characterisation of the UK’s asthma population from infants to old age. Thorax. 2018;73(4):313-
320. doi:10.1136/THORAXJNL-2017-210650 

45. Rothnie KJ, Müllerová H, Hurst JR, et al. Validation of the Recording of Acute Exacerbations of 
COPD in UK Primary Care Electronic Healthcare Records. PLOS ONE. 2016;11(3):e0151357. 
doi:10.1371/JOURNAL.PONE.0151357 

46. Lash TL, Fink AK, Fox MP. Probabilistic Bias Analysis. In: Applying Quantitative Bias Analysis to 
Epidemiologic Data. Springer, New York, NY; 2009:117-150. doi:10.1007/978-0-387-87959-8_8 

47. Barnes CB, Ulrik CS. Asthma and Adherence to Inhaled Corticosteroids: Current Status and 
Future Perspectives. Respiratory Care. 2015;60(3):455-468. doi:10.4187/respcare.03200 

48. Sulaiman I, Cushen B, Greene G, et al. Objective Assessment of Adherence to Inhalers by 
Patients with Chronic Obstructive Pulmonary Disease. https://doi.org/101164/rccm201604-
0733OC. 2017;195(10):1333-1343. doi:10.1164/RCCM.201604-0733OC 

49. Vähätalo I, Ilmarinen P, Tuomisto LE, et al. 12-year adherence to inhaled corticosteroids in adult-
onset asthma. ERJ Open Research. 2020;6(1). doi:10.1183/23120541.00324-2019 

50. Lee SC, Son KJ, Han CH, Park SC, Jung JY. Impact of COPD on COVID-19 prognosis: A 
nationwide population-based study in South Korea. Scientific Reports. 2021;11(1):3735. 
doi:10.1038/s41598-021-83226-9 

51. Hansen ESH, Moeller AL, Backer V, et al. Severe outcomes of COVID-19 among patients with 
COPD and asthma. ERJ Open Research. 2021;7(1):00594-02020. doi:10.1183/23120541.00594-
2020 

52. Adir Y, Saliba W, Beurnier A, Humbert M. Asthma and COVID-19: an update. European 
Respiratory Review. 2021;30(162). doi:10.1183/16000617.0152-2021 

53. Pardhan S, Wood S, Vaughan M, Trott M. The Risk of COVID-19 Related Hospitalsation, Intensive 
Care Unit Admission and Mortality in People With Underlying Asthma or COPD: A Systematic 
Review and Meta-Analysis. Frontiers in Medicine. 2021;8:853. 
doi:10.3389/FMED.2021.668808/BIBTEX 

54. Wang Y, Chen J, Chen W, et al. Does Asthma Increase the Mortality of Patients with COVID-19?: 
A Systematic Review and Meta-Analysis. International Archives of Allergy and Immunology. 
2021;182(1):76-82. doi:10.1159/000510953 

55. Otunla A, Rees K, Dennison P, et al. Risks of infection, hospital and ICU admission, and death 
from COVID-19 in people with asthma: systematic review and meta-analyses. BMJ Evidence-
Based Medicine. 2021;0:bmjebm-2021-111788. doi:10.1136/BMJEBM-2021-111788 

56. Lash TL, Fink AK, Fox MP. Unmeasured and Unknown Confounders. In: Applying Quantitative 
Bias Analysis to Epidemiologic Data. Springer, New York, NY; 2009:59-78. doi:10.1007/978-0-
387-87959-8_5 

57. Mathur R, Bhaskaran K, Chaturvedi N, et al. Completeness and usability of ethnicity data in UK-
based primary care and hospital databases. Journal of Public Health. 2014;36(4):684-692. 
doi:10.1093/pubmed/fdt116 

 

  



AA. Amendments 


