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2. List of abbreviations 
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RCT = randomized controlled trial 

RD = risk difference 
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sIOSW = stabilized inverse odds of sampling weights 

sIPCW = stabilized inverse probability of censoring weights 

sIPTW = stabilized inverse probability of treatment weights 
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4. Abstract 

Title: Estimating Oral Anticoagulant Comparative Effectiveness in the Setting of Effect 

Heterogeneity: Comparing Clinical Trial Transport and Observational Epidemiologic Methods. 

Michael Webster-Clark, University of North Carolina at Chapel Hill, v.1.0 

Rationale and background: Atrial fibrillation affects 33 million adults worldwide.[1] Even if 

individuals with atrial fibrillation are asymptomatic, stroke incidence in the atrial fibrillation 

population is much higher and resulting strokes are more frequently associated with death, 

hospitalization, and long-term disability than strokes in adults without atrial fibrillation.[2, 3] 

Warfarin, the historical standard treatment for preventing strokes in atrial fibrillation, is difficult 

to manage therapeutically due to its lengthy half-life and narrow therapeutic range. Warfarin 

overdose can also result in catastrophic bleeding events.[4] Novel oral anticoagulants are easy 

to manage with simple dose adjustments for renal insufficiency and have been shown to be 

non-inferior to warfarin administered with systematic management protocols in clinical trial 

populations.[5] One of the first novel anticoagulants to be approved in the United States, 

dabigatran, was shown to be more effective than warfarin at stroke and embolic event 

prevention (HR 0.66, 95% C.I. 0.53-0.82) with no increase in bleeding (HR 0.93, 95% C.I. 1.07) in 

the RE-LY trial.[6] 

Research questions:  Estimates of efficacy in these clinical trials are likely not perfect estimates 

of effectiveness in clinical care.[7, 8] Patients selected into trials tend to be young with fewer 

comorbidities than the general population; this can modify the population average treatment 

effect.[9, 10] To address concerns about this potential treatment effect modification, studies 

have used observational claims data to directly estimate safety of novel oral anticoagulants 

compared to warfarin in clinical care and observed attenuated efficacy and differing safety 

profiles. Unfortunately, their results may be confounded by unmeasured variables.[11-20] 

Furthermore, warfarin management protocols from trials do not necessarily represent the way 

warfarin is managed for patients in routine clinical care, making it difficult to know how 

consistent warfarin treatment is between trial and observational populations.[21] Finally, it is 
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unclear how much misclassified and missing data in key effect modifiers (a common issue in 

claims data)[22] could bias estimates when transporting results to new target populations.  

Study design: We will be conducting two main studies in this analysis with two different study 

designs: a retrospective observational study embedded in the United States’ 20% Medicare 

sample, and a re-analysis of the RE-LY trial data after weighting the trial to resemble the target 

population of Medicare beneficiaries while maintaining randomization. 

Populations and Data Sources: This study will use two data sources from two populations that 

are collected in very different ways: the RE-LY trial’s individual-level data and cohorts of 

initiators of dabigatran and warfarin in Medicare from 2010 to October 2015. 

Variables: This study will include a wide variety of potential modifiers of treatment effect in the 

weighting analysis, including use of potentially interacting medications, comorbidities, sex, and 

age. These variables and more will be included in the analyses entirely within the observational 

data. 

Study size:  We anticipate a cohort of approximately 157,000 Medicare beneficiaries based 

upon extrapolation from the FDAs matched study in the 100% Medicare sample, with 

approximately 12,000 individuals from RE-LY contributing data.[15] 

Data analysis:  To address concerns about potential treatment effect attenuation, we will 

estimate the absolute scale causal effect of dabigatran compared to warfarin using inverse odds 

of sampling weights (IOSW) to transport effect estimates from RE-LY and use outcome data on 

the Medicare atrial fibrillation cohort to check whether consistency and exchangeability 

assumptions hold.[23-26] We will separately generate an effect estimate in the routine 

Medicare atrial fibrillation cohort using propensity score weighting using only the observational 

data for comparison with the transported estimate. Finally, we will manipulate the observed 

RE-LY and Medicare populations to assess when misclassified and missing data lead to bias or 

imprecision of transported treatment effect estimates in real-world data. 

Milestones: We aim to have a paper documenting the results from the observational cohort 

submitted to a peer-reviewed journal by January 2018, with another paper comparing the 

weighted RE-LY trial results by June 2018. 
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5. Amendments and updates 

Number Date Section of study 

protocol 

Amendment or 

update 

Reason 

1.0 8/31/2018 All Created Submission prep 
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6. Milestones 

Milestone Date 

Data access obtained (Medicare) 9/2018 

Data access obtained (RE-LY) 10/2018 

Observational study results 1/2019 

Weighted trial study results 4/2019 

Misclassification and missing data study 

results 

6/2019 
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7. Rationale and background 

Atrial fibrillation affects 33 million adults worldwide.[1] Even if individuals with atrial fibrillation 

are asymptomatic, stroke incidence in the atrial fibrillation population is much higher and 

resulting strokes are more frequently associated with death, hospitalization, and long-term 

disability than strokes in adults without atrial fibrillation.[2, 3] Warfarin, the historical standard 

treatment for preventing strokes in atrial fibrillation, is difficult to manage therapeutically due 

to its lengthy half-life and narrow therapeutic range. Warfarin overdose can also result in 

catastrophic bleeding events.[4] Novel oral anticoagulants are easy to manage with simple dose 

adjustments for renal insufficiency and have been shown to be non-inferior to warfarin 

administered with systematic management protocols in clinical trial populations.[5] One of the 

first novel anticoagulants to be approved in the United States, dabigatran, was shown to be 

more effective than warfarin at stroke and embolic event prevention (HR 0.66, 95% C.I. 0.53-

0.82) with no increase in bleeding (HR 0.93, 95% C.I. 1.07) in the RE-LY trial.[6] 

LITERATURE REVIEW 

We conducted a literature review of the randomized controlled trials and observational studies 

comparing dabigatran to warfarin, starting with randomized controlled trials. 

Randomized controlled trials: 

Dabigatran’s approval for the indication of stroke prophylaxis in AF was based on the RE-LY 

non-inferiority trial.6 In RE-LY, more than 18,000 AF patients from 951 clinical centers in more 

than 44 countries were randomized to receive warfarin under a standard dosing protocol, twice 

daily dabigatran 110 mg, or twice daily dabigatran 150 mg. Patients were blinded to which dose 

of dabigatran they received, but use of warfarin was open-label. Patients were followed for a 

variety of outcomes in an intention-to-treat analysis. Markedly reduced hazards were observed 

for the primary efficacy outcome of stroke or systolic embolism for patients in the 150 mg 

dabigatran arm versus the warfarin arm (HR: 0.66, 95% C.I. 0.53, 0.82) and major bleeding 

overall was also slightly lower (HR: 0.93, 95% C.I. 0.81, 1.07), but much higher rates of 

gastrointestinal bleeding were observed (HR: 1.50, 95% C.I. 1.19, 1.89). Notably, the HR for 
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ischemic stroke (rather than combined hemorrhagic and ischemic stroke) was 0.76 (95% C.I. 

0.60, 98) in the 150 mg arm. The 110 mg dose of dabigatran, on the other hand, had a larger 

decrease in major bleeding versus warfarin (HR: 0.80, 95% C.I. 0.69, 0.93) and a smaller increase 

in gastrointestinal bleeding (HR: 1.10, 95% C.I. 0.86, 1.41) but a much smaller improvement in 

the primary efficacy outcome (HR: 0.91, 95% C.I. 0.74, 1.11). Both the 110 mg and 150 mg 

dosage improved survival versus warfarin with a HR of 0.91 (95% C.I. 0.80, 1.03) and 0.88 (95% 

C.I. 0.77, 1.00), respectively. The non-inferiority margins set by the investigators were all met, 

and the drug was approved for dosing at 150 mg twice daily. It is not clear, however, how these 

tradeoffs might manifest in populations with differing distributions of risk factors for bleeding 

and stroke. 

Observational studies: 

There have been several comparative effectiveness studies published using observational and 

claims data in an attempt to determine whether dabigatran and other NOACs are as or more 

effective in practice compared to their performance in clinical trials. Their results have varied, 

but all have differed from RE-LY in one way or another. On the whole they reinforce the need 

for additional studies and examination of potential treatment effect heterogeneity. 

Perhaps the largest study to date has been the FDA’s analysis using initiators of warfarin and 

dabigatran in the full Medicare sample from October 2010 to December 2012.[15] They 

estimated a hazard ratio of 0.80 (95% C.I. 0.67, 0.96) for ischemic stroke, favoring dabigatran, 

and a hazard ratio of 0.97 (95% C.I. 0.88, 1.07) for major bleeding, with a heightened risk of 

gastrointestinal bleeding for dabigatran patients with a hazard ratio of 1.28 (95% C.I. 1.14, 

1.44); when they looked at dosages of 150 mg specifically, rather than 75 mg, they found 

improved stroke reduction (hazard ratio of 0.70) but greater risk of gastrointestinal bleed 

(hazard ratio of 1.51) more in line with the results of the RE-LY trial. They did notice, however, 

that the increase in the risk of gastrointestinal bleeding was concentrated in older adults, 

particularly women over 75 and men over 85. Women over 85 were the only group with an 

increased risk of mortality from dabigatran, but other groups experienced an improvement in 
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mortality with an overall hazard ratio of 0.76 (95% C.I. 0.67, 0.86) with the 150 mg dose, more 

pronounced than the 0.88 observed in the RE-LY trial. 

At the same time the FDA study was running on the full Medicare sample, Hernandez et al were 

investigating the question using the 5% Medicare sample.[16] This study only used Medicare 

initiators from October 2010 to October 2011, limiting the population, and required two 

outpatient diagnoses for AF or atrial flutter to qualify an individual as an AF patient, as well as 

requiring individuals to fill within two months of their incident diagnosis (while the FDA merely 

required a diagnosis at any time before filling). They focused predominantly on bleeding 

outcomes, rather than stroke or systemic embolism.. After adjustment, they identified an 

increased risk of major bleeding with a hazard ratio of 1.58 (95% C.I. 1.36, 1.83) and an 

increased risk of gastrointestinal bleeding with a hazard ratio of 1.85 (95% C.I. 1.64, 2.07), both 

higher than the original RE-LY trial. Despite being conducted on a subsample of the FDA data, 

their results looked quite a bit worse for dabigatran, suggesting that either the difference in 

grace period, the use of a different target population than the FDA (the whole population of 

initiators rather than the dabigatran patients targeted in a matched design), worse confounding 

control, or all three. 

Other U.S. governmental databases have been used to answer this question as well. Villines et 

al utilized the Department of Defense database, which provides uniform medical coverage and 

pharmacy benefits to nearly 10 million individuals receiving care at both military and non-

military institutions, to find initiators of dabigatran and warfarin from October 2010 to July 

2012 with at least one diagnosis for AF within 12 months of their initiation.[17] They identified 

a cohort of 14,813 dabigatran users and 24,500 warfarin initiators, with propensity score 

matching using a model built by backwards selection reducing it to 12,793 of each. Comparing 

dabigatran to warfarin, they estimated a hazard ratio for stroke of 0.73 (95% C.I. 0.55, 0.97), a 

hazard ratio for major bleeding of 0.87 (95% C.I. 0.74, 1.03) and 0.82 (95% C.I. 0.71, 0.95) when 

restricting to 150 mg doses, and a hazard ratio for gastrointestinal bleeding of 1.13 (95% C.I. 

0.94, 1.37). Additionally, they found a hazard ratio for myocardial infarction of 0.65 (95% C.I. 

0.45, 0.95), much lower than that observed in RE-LY of 1.35 (95% C.I. 0.98, 1.87); similarly, the 

hazard ratio for death was 0.64 (95% C.I. 0.55, 0.74). 
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Other researchers examined private insurance databases. Seeger, Schneeweiss, et al performed 

an analysis using data from two commercial insurance databases (MarketScan from Truven and 

Clinformatics from Optum) focusing on both safety and efficacy.[18] These investigators 

identified 41,103 warfarin and 18,560 dabigatran initiators between October 2010 and 

December 2013. The authors matched on a propensity score with 78 investigator-specified 

covariates, resulting in a final cohort of 15,529 initiators of each medication (with successful 

removal of imbalances in the covariates as measured by the SMD), with an additional analysis 

using high-dimensional propensity scores. This study was the first to look at benefits on an 

absolute scale, rather than reporting purely hazard ratios. Individuals stopped follow-up at the 

time of death. When contrasting dabigatran with warfarin, they found a hazard ratio of 0.77 

(95% C.I. 0.54, 1.09) and one-year risk difference of -0.0003 (95% C.I. -0.0006, 0.0002) for 

strokes and a hazard ratio of 0.75 (95% C.I. 0.65, 0.87) and risk difference of -0.018 (95% C.I. -

0.025, -0.010) for major hemorrhages; they did not investigate gastrointestinal hemorrhages or 

mortality.  

Another large-scale study was conducted in Denmark, where both the 110 mg and 150 mg 

twice daily doses of dabigatran were approved for use in August 2011.[27] They included 

dabigatran initiators after August 2011 and only allowed warfarin initiators to enter between 

August 2009 and July 2010, resulting in initial cohorts of 5,106 dabigatran and 13,548 warfarin 

patients. This was another propensity-score matched analysis (this time matched 2:1) that 

found matches for 4,978 dabigatran patients of either dosage and censored at treatment 

switching but not discontinuation with two levels of propensity score. They found large 

mortality benefits for both doses of dabigatran with hazard ratios of 0.79 (95% C.I. 0.65, 0.95) 

for the 110 mg dose and 0.57 (95% C.I. 0.40, 0.80) for the 150 mg dose compared to warfarin. 

They also found much lower risks of gastrointestinal bleeding comparing dabigatran 110 mg 

with warfarin with a hazard ratio of 0.60 (95% C.I. 0.37, 0.93) and only a slight increase for 150 

mg with a hazard ratio of 1.12 (95% C.I. 0.67, 1.83), with favorable results for major bleeding 

with both dosages as well (HR: 0.82 (95% C.I. 0.59, 1.12) for the 110 mg dose and HR: 0.77 (95% 

C.I. 0.51, 1.13) for the 150 mg dose). Stroke benefits were also inconsistent with findings from 

other studies and with the logical assumption that higher doses will prevent more embolisms, 
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with hazard ratios of 0.73 (95% C.I. 0.53, 1.00) for the 110 mg dose and 1.18 (95% C.I. 0.85, 

1.64) for the 150 mg dose. Given the large differences between their cohorts even after 

propensity score matching and the strange trends between dabigatran doses (which could be 

the result of matching to different cohorts), their results are difficult to interpret. 

The final and most recent study focusing specifically on the contrast between dabigatran and 

warfarin in AF was conducted by the FDA with the Sentinel system in 2017.[20] The Sentinel 

network collects data from a variety of administrative, clinical, and pharmacy dispensing 

databases for use in large-scale investigations of key medical questions in the United States.[28] 

Using this system and data from November 2010 to May 2014, Go et al conducted an 

propensity-score matched analysis (with matching and model estimation performed within 

each of the data partners), identifying 25,289 dabigatran initiators and finding matches for each 

one amongst the 83,034 warfarin initiators. They estimated a hazard ratio for ischemic stroke of 

0.92 (95% C.I. 0.65, 1.28) and a hazard ratio for gastrointestinal bleeding of 1.04 (95% C.I. 0.83-

1.30), meaning their results showed both less benefit and less harm than the RE-LY trial. 

Interestingly, however, they did identify substantial heterogeneity in gastrointestinal bleeding 

with those under 65 having a hazard ratio of 0.59 (95% C.I. 0.32-1.07), those between 65 and 74 

having a hazard ratio of 0.81 (95% C.I. 0.52-1.24), those between 75 and 84 having a hazard 

ratio of 1.47 (95% C.I. 1.05, 2.14) and those over 85 experiencing a hazard ratio of 1.84 (95% C.I. 

1.05, 3.20). There was also some heterogeneity by kidney function in both ischemic stroke and 

gastrointestinal bleeding risks, though this may be due to other concomitant factors associated 

with reduced kidney function like age, hypertension, diabetes, and congestive heart failure. 

There is another study focusing on several different NOACs with dabigatran as one of the 

potential options whose results also warrant discussion. Lip et al conducted a study in 

MarketScan examining NOAC initiators from January to December 2013 focusing specifically on 

major bleeding risk and using Cox proportional hazards with direct adjustment for a variety of 

variables and backwards selection at p < 0.2.[11] These authors identified a decreased rate of 

major bleeding for dabigatran (HR: 0.88, 95% C.I. 0.64-1.21) for dabigatran relative to warfarin. 

Their propensity matched analysis showed a slightly reduced rate of major bleeding with a 

hazard ratio of 0.69 (95% C.I. 0.50-0.96), suggesting some potential treatment effect 
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heterogeneity.[12] In both analyses individuals were followed until discontinuation from their 

initial medication or switching, though the amount of gap or grace period they allowed is 

unclear. These results generally seem to agree with those of other studies in younger, claims-

based cohorts. 

Overall, there is still significant clinical uncertainty about the actual benefit/risk profile of 

dabigatran compared to warfarin; still, these studies have clearly shed light on the fact that 

there is likely heterogeneity in the safety and efficacy of dabigatran with respect to warfarin. 

While each of the studies added to our body of knowledge only one of them implemented an 

intention-to-treat analysis for comparison with RE-LY. Beyond this, almost all of the studies 

focused on estimating a treatment effect amongst dabigatran initiators, who often have 

characteristics that set them apart from the general patients included in RE-LY. Additionally, 

most stopped following individuals at their time of death while using Cox proportional hazards 

and Kaplan-Meier estimators that effectively assume we can prevent competing risks; this can 

be problematic, particularly when the competing event is roughly as common or more common 

than the event of interest.[29] A new study in a Medicare cohort spanning more time using 

both IPTW and matched designs alongside an attempt to create an analysis using the trial data 

that conditions on staying on therapy (while accounting for differences in potential effect 

measure modifiers among individuals switching therapies) would significantly improve 

understanding of which medication performs better in an older population with a higher 

prevalence of comorbid conditions, without having to assume that adherence patterns will be 

constant across the RE-LY and Medicare cohorts with respect to baseline modifiers. 
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8. Research question and objectives 

The purpose of this project is to estimate the effect of dabigatran versus initiation on the risk of 

stroke, bleeding, and mortality in a real-world target population using trial transport and 

observational methods and further explore the impact of missing data and misclassification on 

said trial transport methods. 

 

We will:  

Specific Aim 1: Estimate the effect of dabigatran versus warfarin initiation on the 1 and 2-year 

risk of stroke, bleeding, and death among Medicare beneficiaries with atrial fibrillation using 

transportability methods reweighting the RE-LY trial data. 

1.1: Compare risks of each outcome between the RE-LY and Medicare cohorts on each 

treatment before and after using inverse odds of sampling weights to standardize RE-LY 

to Medicare with respect to effect measure modifiers (EMM).  

1.2: Estimate the absolute effect of dabigatran versus warfarin on 1 and 2-year risks of 

stroke, bleeding, and death using inverse odds of sampling weights to standardize the 

RE-LY trial to the Medicare cohort in effect measure modifiers. 

Specific Aim 2: Estimate the effect of dabigatran versus warfarin initiation on 1 and 2-year risks 

of stroke, bleeding, and death in Medicare beneficiaries with atrial fibrillation using 

observational data and propensity score methods for comparison with the results from Aim 1. 

2.1: Estimate treatment effects in warfarin and dabigatran new users with a new user 

active comparator design. 

2.2: Estimate treatment effects in dabigatran new users and dabigatran switchers with a 

prevalent user design. 

2.3: Compare these estimates and their precision to those obtained using the clinical 

trial data. 
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Specific Aim 3: Explore the effects of creating missing data and misclassification on the target 

population effect estimates of the 1 and 2-year risk differences for stroke, bleeding, and death 

and their precision using covariate data simulated from the RE-LY trial and Medicare cohort 

data. 

3.1: Assess the effects of different methods of addressing missing data on the 

transported effect estimates and their precision after simulating various types of 

covariate missingness in the RE-LY and Medicare data. 

3.2: Assess the effect of ignoring or addressing misclassification on the transported 

effect estimates and their precision after simulating various types of covariate 

misclassification in the RE-LY and Medicare data. 
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9. Research methods 

This research plan is designed to compare the risk of stroke and bleeding in older adults in 

routine care taking warfarin or dabigatran with risks in RE-LY trial participants, before and after 

adjusting for known risk factors; estimate the effects of dabigatran compared to warfarin on 

stroke and bleeding risk in older adults on the absolute scale using transport weights; assess the 

degree to which estimates from various observational methods agree with these transported 

trial results; and evaluate how missing or misclassified effect measure modifiers in trials and 

claims data alter transported estimates. 

 

9.1 Study design 

The aims call for estimating the safety and effectiveness of initiating and staying on dabigatran 

compared to starting and staying on warfarin in the U.S. Medicare population with atrial 

fibrillation (AF) through transporting the results of the RE-LY trial to several target populations 

defined by treatment initiation. We will be analyzing effects on absolute risks of stroke, bleed, 

and death at 1- and 2-years after dabigatran or warfarin initiation, if possible. Because standard 

observational approaches and direct use of the trial estimate both have their limitations, we 

will need to fuse cohort data from the Medicare population with the RE-LY trial data. 

Combining these two study designs makes it possible to estimate average treatment effects in 

the Medicare population. This estimate will be valid under the assumption that a sufficient set 

of causes of sampling into the trial that are risk factors for the outcome have been accounted 

for.[30] The outcome data collected on patients in Medicare will allow us check this assumption 

using various weighting techniques as well as assess how different the results are from results 

obtained using observational approaches like the new user active comparator or prevalent user 

design. Finally, having access to both cohorts will allow us to explore the change in estimates 

and their precision resulting from misclassification and missing data by censoring and 

misclassifying real observed data rather than relying on pure simulation approaches. 
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9.2 Setting 

This study will use two data sources from two populations that are collected in very different 

ways: the RE-LY trial’s individual-level data and cohorts of initiators of dabigatran and warfarin 

in Medicare from 2010 to October 2015. 

RE-LY Population Description 

Individual-level data for the RE-LY trial will be obtained using Clinical Study Data Request (CSDR) 

and analyzed on the Clinical Trial Data Transparency (CTDT) platform, soliciting data access as 

soon as the analysis protocol is finalized. The RE-LY trial randomized 18,113 patients to 

warfarin, 110 mg dabigatran twice daily, and 150 mg of dabigatran twice daily. We will focus 

primarily on the results for the 150 mg dosage of dabigatran, since the 110 mg dose was not 

approved for usage in the United States, though we could also integrate the 110 mg dose in 

secondary analyses. Eligible patients had documented AF during the six months before their 

enrollment, as well as at least one of five other risk factors for stroke including: age greater 

than 75; previous stroke, TIA, or systemic embolism; left ventricular ejection fraction under 40% 

in the past six months; a diagnosis of diabetes mellitus and age over 65; or hypertension 

requiring pharmaceutical treatment and age over 65; or documented coronary artery disease 

and age over 65. 

Key exclusions to assure either safety or efficacy of warfarin or dabigatran included reversible 

AF, prosthetic heart valves or other conditions for which dabigatran had not been tested, stroke 

within the past 14 days or severe stroke within the past 6 months, a variety of conditions 

associated with increased risk of bleeding, active infective endocarditis, active liver disease, 

anemia or thrombocytopenia, patients judged unreliable or having a life expectancy less than 

the expected trial duration, patients who received another investigational drug within 30 days, 

transaminase elevations in response to ximelagatran (another agent with a similar mechanism 

of action), and patients with severe renal impairment (creatinine clearance of equal to or less 

than 30 mL/min). The RE-LY trial was conducted in a population from a variety of countries with 

a wide range of ages (mean age in dabigatran 150 mg of 71.5 years, standard deviation 8.8) and 
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collected data on multiple potential causes of heterogeneity including medication use, past 

stroke, and other medical diagnoses.  

As a randomized controlled trial there is no confounding in expectation in the baseline 

covariate distribution in RE-LY (and analyses suggested limited chance confounding). This allows 

estimation of an internally valid intention-to-treat effect estimate in the target population using 

outcome data from RE-LY in Aim 1 provided we have weighted the RE-LY data to match the 

distributions of measured effect modifiers in our target. It does not, however, guarantee that 

an estimate censoring at treatment discontinuation will be internally valid. We will limit our 

population to patients over 65 from the RE-LY trial to ensure we are looking only at older 

adults; this is not problematic from a sample size perspective, as 85% of the initial RE-LY trial 

population was over the age of 65. 

 

Medicare Atrial Fibrillation Population Description 

The specific Medicare data used will be the 20% sample of all Medicare beneficiaries with fee-

for-service coverage of Medicare Parts A, B, and D for at least one month from 2007-2015, 

available at the University of North Carolina through the Sheps Center. We will be constructing 

two main study cohorts from the Medicare population from 2010 (when dabigatran was 

approved for use in the United States) to October 2015 (when the United States transitioned 

from ICD-9 to ICD-10 codes) for this analysis: first, a cohort of dabigatran and warfarin 

initiators; and second, a cohort of dabigatran and warfarin initiators, where dabigatran users 

are allowed to have previously initiated warfarin or switched to dabigatran. 

Patients will be eligible for inclusion into the Medicare cohort at their first initiation of warfarin 

or 150 mg twice daily dabigatran with a 2-month washout period for use of either drug or 

another NOAC (apixaban, rivaroxaban, and edoxaban), provided they have an inpatient or 

outpatient AF diagnosis code in the 6 months before or 1 week after their prescription (in which 

case follow-up will begin at the time of diagnosis). This requirement for a recent AF diagnosis 

code is analogous to the RE-LY trial inclusion criteria that required evidence of recent AF. 

Individuals will also have to fit the eligibility criteria for RE-LY including at least one risk factor 

for stroke (described in the RE-LY Population Description), as represented by at least one 
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diagnosis code in the year prior to initiation. Individuals will also need to have 12 months 

continuous coverage in Medicare parts A, B, and D before this index prescription to enable 

assessment of eligibility criteria, key effect measure modifiers, and potential confounders.  

This period will also be used to exclude individuals with identifiable exclusion criteria for the 

trial, including liver disease, severe stroke within the past six months, anemia and 

thrombocytopenia, valvular AF or prosthetic heart valves, and severe renal insufficiency 

(specific codes listed in Appendix B).  If there are multiple initiations, only the first eligible 

initiation will be included. This Medicare cohort will contribute external validity to the project 

and allow insight into the distribution of effect modifiers in a general clinical cohort 

participating in anticoagulation care that may not be willing or able to participate in a full 

randomized trial, critical for Aim 1. It will also provide data for the observational analysis in Aim 

2 and the assessment of the effects of missing data in Aim 3. 

The Medicare cohort will be further divided into four potential target populations: 1) all 

patients initiating warfarin for AF that could have been included in RE-LY; 2) all patients 

initiating dabigatran for AF that could have been included in RE-LY; 3) all patients initiating 

either drug for AF that could have been included in RE-LY; and 4) all dabigatran initiators and 

switchers that could have been included in RE-LY.  
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9.3 Variables  

We will be using the definitions described below for each covariate in the Medicare cohort, but 

maintaining the adjudicated and clinically reviewed definitions from the RE-LY trial in those 

participants. Exposure will be defined based upon RedBook’s NDC-generic name linkage. 

Outcome Hospital Discharge Codes 

Stroke As primary discharge diagnosis: 

431.x Intracerebal hemorrhage 

433.x1 Occlusion and stenosis of precerebral 

arteries 

434.x1 Occlusion and stenosis of cerebral arteries 

with cerebral infarction 

436.x Acute but ill-defined cerebrovascular 

events 

Major bleeding As primary discharge diagnosis: 

 

Intracranial bleeding: 

430.x Subarachnoid hemorrhage 

431.x Intracerebral hemorrhage 

432.x Other and unspecified intracranial 

hemorrhage 

 

Upper gastrointestinal bleed: 

531.0x Acute gastric ulcer with hemorrhage with 

or without obstruction 

531.2x Acute gasric ulcer with hemorrhage and 

perforation with or without obstruction 

531.4x Chronic or unspecified gastric ulcer with 

hemorrhage with or without obstruction 

531.6x Gastric ulcer with hemorrhage and 

perforation with or without obstruction 
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532.0x Acute duodenal ulcer with hemorrhage 

with or without obstruction 

532.2x Acute duodenal ulcer with hemorrhage 

and perforation with or without obstruction 

532.4x Chronic or unspecified duodenal ulcer 

with hemorrhage with or without obstruction 

532.6x Chronic or unspecified duodenal ulcer 

with hemorrhage and perforation with or without 

obstruction 

533.0x Acute peptic ulcer of unspecified site with 

hemorrhage with or without obstruction 

533.2x Acute peptic ulcer of unspecified site with 

hemorrhage and perforation with or without 

obstruction 

533.4x Chronic or unspecified peptic ulcer of 

unspecified site with hemorrhage with or without 

obstruction 

533.6x Chronic or unspecified peptic ulcer of 

unspecified site with hemorrhage and perforation 

with or without obstruction 

534.0x Acute gastrojejunal ulcer with 

hemorrhage with or without obstruction 

534.2x Acute gastrojejunal ulcer with 

hemorrhage and perforation with or without 

obstruction 

534.4x Chronic or unspecified gastrojejunal ulcer 

with hemorrhage with or without obstruction 

534.6x Chronic or unspecified gastrojejunal ulcer 

with hemorrhage and perforation with or without 

obstruction 

578.0 Hematemesis 
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ICD-9 procedure code 44.43 Endoscopic control 

of gastric or duodenal bleeding 

CPT code 43255 Upper gastrointestinal 

endoscopy including esophagus, stomach and 

either the duodenum and/or jejunum as 

appropriate with control of bleeding, any method 

 

Lower and unspecified G.I. bleeds: 

562.02 Diverticulosis of small intestine with 

hemorrhage 

562.03 Diverticulitis of small intestine with 

hemorrhage 

562.12 Diverticulosis of colon with hemorrhage 

562.13 Diverticulitis of colon with hemorrhage 

569.3x Hemorrhage of rectum and anus 

569.85 Angiodysplasia of intestine with 

hemorrhage 

578.1x Blood in stool 

578.9 Hemorrhage of GI tract, unspecified 

 

Other major bleeds: 

285.1x Acute posthemorrhagic anemia 

423.0x Hemopericardium 

459.0x Hemorrhage not specified 

599.7 Hematuria 

719.1x Hemathrosis 

786.3x Hemoptysis 

984.7x Epistaxis 
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Covariates Related ICD-9 or procedure codes 

Inclusion:  

Atrial fibrillation 427.31 

Congestive heart failure 1 inpatient or 2 outpatient ICD-9 codes: 

428.x 

398.91 

402.01 

402.11 

402.91 

404.01 

404.11 

404.91 

404.03 

404.13 

404.93 

Past stroke ICD-9 codes: 

431.x 

433.x 

434.x  

436.x  

437.1 

438.x 

Past TIA ICD-9 code: 

435.x 

Diabetes 1 hospital discharge or 2 outpatient ICD-9 for DM 

250.x 

OR 

Dispensing of metformin, sulfonylureas, insulin, 

or other direct antidiabetic agent 

Hypertension ICD-9 diagnosis codes: 

401.x-405.x 
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OR 

Dispensing of CCB, ACEI, ARB, BB, thiazide 

diuretic, or other direct antihypertensive agent 

Coronary Artery Disease (CAD) At least 1 ICD-9 code from: 

410.x-414.x 

429.2 

V45.81 

Exclusion:  

Valvular heart disease and heart valve 

replacement 

ICD-9 diagnosis codes: 

394.x 

395.x 

396.x 

397.x 

398.9x 

V42.2 

V43.3 

ICD-9 procedure codes: 

35.1x 

CPT codes: 

33660-33665 

33400-33403 

33405 

33420-33468 

33420-33430 

33460 

33463-33468 

33475 
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33496 

0257T 

0258T 

0259T 

0262T 

 

Active liver disease ICD-9 diagnosis codes: 

070.x  

571.x-573.x 

456.0-456.2x 

155.0 

155.1 

155.2 

576.8 

ICD-9 procedure codes: 

39.1 

42.91 

Cancer within the last 6 months ICD-9 diagnosis codes: 

140.x-208.x 

230.x-239.x 

Severe renal disease requiring dialysis ICD-9 procedure codes: 

39.95 

54.98 

56.0 

V56.8 

CPT codes: 

90935-90993 

99512 

99559 
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Chronic renal insufficiency 

 

ICD-9 codes: 

582.x-583.x 

585.x-587.x 

Active or subacute endocarditis 

 

ICD-9 codes: 

421.1 

 

Predicted probability of frailty > 15% Calculated from Faurot et al.[31] 

Other covariates  

Systemic embolism ICD-9 codes: 

444.x 

Deep vein thrombosis 451.x, 453.x 

Pulmonary embolism 415.11, 415.12, 415.19 

Hyperlipidemia ICD-9 codes: 

272.0 

272.2 

272.4 

OR 

Statins or other antihyperlipidemic 

Atherosclerosis ICD-9 codes: 

440.9 

414.x 

429.2 

Peripheral vascular disease 1 inpatient or 2 outpatient claims with the 

following codes: 

ICD-9 codes: 

440.20-440.24 

440.29-440.32 

440.3 

443.9 

ICD-9 procedure codes: 

38.08 
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38.09 

38.18 

38.48 

38.49 

39.25 

39.5 

39.9 

HCPCs: 

35256, 35286, 35351, 35355, 35361, 35363, 

35371, 35372, 35381, 35454, 35456, 35459, 

35470, 35473, 35474, 35482, 35483, 35485, 

35492, 35493, 35495, 35521, 35533, 35541, 

35546, 35548, 35549, 35551, 35556, 35558, 

35563, 35565, 35566, 35571, 35621, 35623, 

35641, 35646, 35647, 35650, 35651, 35654, 

35656, 35661, 35663, 35666, 35671  

Acute renal disease (within the past month) ICD-9 codes: 

580.0 

580.4 

580.8 

580.9 

581.0 

581.1 

581.2 

581.3 

581.8 

581.9 

584.6 

584.7 

584.8 

584.9 

Smoking ICD-9 code: 
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305.1 

649.0x 

989.84 

Obesity ICD-9 code: 

278.00 

Alcoholism ICD-9: 

94.61-94.63 

94.67-94.69 

303.x 

305.0x 

291.x 

357.5x 

425.5x 

571.1x 

571.2x 

571.3x 
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9.4 Data sources 

Outcome Assessment in the RE-LY Trial 

The RE-LY trial followed individuals for two primary outcomes after treatment initiation: first 

stroke or systemic embolism (efficacy) and first major hemorrhage (safety). These outcomes 

were reviewed and categorized by an international team of blinded adjudicators and patients 

were also provided symptom questionnaires at regular intervals; these symptom 

questionnaires were followed up on with medical record review. Stroke was defined as “sudden 

onset of a focal neurologic deficit in a location consistent with the territory of a major cerebral 

artery” and was divided into ischemic, hemorrhagic, and unspecified types. Major bleeding was 

defined as reduction in hemoglobin level of 20 grams per liter or more, transfusion with at least 

2 units of blood, or symptomatic bleeding in a critical area or organ. 

Within the context of our study, we will be using RE-LY’s outcome data on first stroke, whether 

hemorrhagic, ischemic, or unspecified, and ignoring the systemic embolism outcomes (as it is 

difficult to compare these results given difficulties capturing embolisms in claims data)[32] with 

a secondary analysis focusing exclusively on ischemic stroke as an efficacy outcome; risk of 

hemorrhagic stroke may be elevated with a more potent anticoagulant while risk of an ischemic 

stroke is lowered. When assessing bleeding outcomes, we will be directly using the major 

bleeding outcomes from the trial, with a secondary analysis focusing specifically on 

gastrointestinal bleeding events. We will also use crude mortality data from the trial. 

 

Exposure Assessment in the RE-LY Trial 

In order to facilitate comparison with observational analyses and prevent the large gap in 

warfarin adherence from jeopardizing transportability, our main analyses will be an analysis 

censoring individuals at treatment switching or discontinuation. While there is potential for a 

per-protocol analysis censoring at treatment switching or discontinuation unless an individual 

experiences adverse events, it would be difficult to implement a comparable approach in 

observational data.[33]  
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In order to conduct any non-ITT analysis, we would have to be capable of tracking when 

individuals discontinued or switched the drug to which they were randomized. During the span 

of their follow-up visits, the RE-LY trial tracked individuals to see whether they discontinued the 

study drug. The authors did not appear to conduct any per-protocol or as-treated analyses in 

the study, so it is unclear exactly what data they will have available.  

Given their regularly scheduled follow-up visits (14 days after randomization, at 1 month, at 3 

months, at 6 months, at 9 months, at 12 months, and then every 4 months until the end of the 

study) it seems probable there is data on whether patients discontinued treatment at each of 

these time points, even if the exact date of discontinuation may not be not recorded. It is 

certain they have discontinuation data at the 1 and 2 year marks; the main publication reports 

that discontinuation varied slightly across study arms and was lower in the warfarin group than 

in the dabigatran groups at both one year (10% vs. 15%) and two years (17% vs. 21%) and only 

20 patients (0.1%) were lost to follow-up across the entire study. If there is data on specific 

dates of discontinuation, we will explore giving an additional 1 week grace period to look for 

outcome events in the trial in secondary analyses. If there is only information about 

discontinuation at each follow-up visit, we will assume individuals discontinued at the midpoint 

of the interval in the main analysis and perform sensitivity analyses with discontinuation at the 

beginning or end of the interval as well. 

In our intention-to-treat secondary analyses, exposure assessment for trial patients will be 

trivial: all their person-time will be assigned the exposure to which they were randomized. 

 

Covariate Assessment in the RE-LY Trial  

Two types of covariates will be assessed in RE-LY in addition to exposure and outcome: 1) effect 

measure modifiers for use in the sampling model and 2) variables associated with 

discontinuation and censoring. Fortunately, RE-LY collected a large quantity of baseline 

information on variables hypothesized to be associated with the outcome in order to examine 

treatment effects in various subgroups that can be leveraged in these analyses. 

Effect measure modifiers: Potential effect measure modifiers were identified from causal 

diagrams depicting hypothesized causal relationships between sampling, our outcomes of 
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stroke and bleeding, and a variety of other variables. These diagrams were built by examining 

the marginal distributions of variables in trial and target populations (including in the literature 

review) as well as review of risk factors for stroke and bleeding for patients with AF. As 

mentioned in section of Background and Significance, a transport model that renders sampling 

independent of the outcome should allow estimation of an unbiased estimate in the target 

population. After adjusting for comorbidities, age, sex, frailty, and history of past medication 

use, the only path from sampling to either of our outcomes will be via the discontinuation and 

anagement node. Fortunately, censoring individuals at discontinuation or switching will reduce 

the potential for differing rates of discontinuation to be problematic, but without detailed lab 

and clinic data in both the trial and target population removing the potential for differences in 

warfarin management is unlikely to be possible. Aim 1.1 is designed to assess the extent to 

which this or other unmeasured factors may bias our prediction of the outcome in the target 

population. 

Censoring weight covariates: We will also use baseline and time-varying trial covariates to 

standardize the population continuing treatment to continue to be representative of the 

population at baseline even if some of the effect modifying covariates are associated with 

censoring (or, in this case, trial discontinuation). This is for two reasons: first, there is potential 

for introduction of confounding after initial randomization. If, for example, patients with 

hypertension are more likely to discontinue treatment with warfarin than treatment with 

dabigatran and hypertension is associated with increased stroke risk, an unweighted effect 

estimate censoring at discontinuation or switching would be biased in favor of dabigatran.[33] 

Inverse probability of discontinuation weights (or inverse probability of censoring weights) can 

help deal with this problem. 

The second reason is particular to transporting effect estimates that requires continuous 

prescribing and deals with mismatched effect measure modifiers or risk factors in the two 

populations. Suppose that patients in the target population with diabetes in the target 

population are more likely to discontinue their warfarin or dabigatran, while patients in the trial 

population are not. If we do not weight or standardize both populations, we could see 

differences in our weighted trial effect estimate and observational population effect estimates 
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purely because at later time points the trial population includes more individuals with the effect 

measure modifier of diabetes. We could also see differences in our Aim 1.1 assessment of 

transportability that arise only because of differences we’ve induced by requiring individuals to 

stay on their initial therapy.  

The solution is stabilized inverse probability of censoring (sIPCW) weights. In the RE-LY trial, 

these will be estimated with stepwise logistic regression within each treatment arm assessing 

the probability of staying on treatment up to a given time point, then the next time point, then 

the next, and so on. Variables are assessed at baseline as well as at each time point (it is unclear 

whether RE-LY collected data on many effect modifiers after baseline). Individuals are then 

assigned weights according to the following equation where Zi is the set of time-varying and 

baseline covariates associated with sampling and Tx is the treatment arm. 

𝑠𝐼𝑃𝐶𝑊 =
𝑃(𝐶𝑒𝑛𝑠𝑜𝑟𝑒𝑑𝑡 = 0| 𝐶𝑒𝑛𝑠𝑜𝑟𝑒𝑑𝑡−1 = 0, 𝑇𝑥 = 𝑋 )

𝑃(𝐶𝑒𝑛𝑠𝑜𝑟𝑒𝑑𝑡=0 | 𝐶𝑒𝑛𝑠𝑜𝑟𝑒𝑑𝑡−1 = 0, 𝑍𝑖 , 𝑇𝑥 = 𝑋)
 

We will explore separate analyses estimating these probabilities at quartiles of follow-up, 

quintiles of follow-up, and at 6 months, 12 months, and either 20 months (if specific dates of 

discontinuation are not available in the data) or 18 months (if discontinuation status is known 

at each follow-up visit). We will include effect measure modifiers as well as confounders that 

are known in the trial (discussed below in the observational section) in the model, as well as the 

last INR before discontinuation for patients in the warfarin arm should it be available. 

Fortunately, warfarin and dabigatran do not cause changes in many of these variables, 

particularly most of the comorbidities and age, so there are few mediators we have to worry 

about conditioning on. 

 

Outcome Assessment in Medicare 

Unfortunately, we do not have access to medical records for review by an international blinded 

group of adjudicators for use in this cohort. Instead, we will use ICD-9 codes in claims, both 

inpatient and outpatient, to identify stroke and major bleeding. We will use similar ICD-9 codes 

to identify the types of stroke that were used in past observational analyses using claims-based 

data to facilitate comparisons to their results (i.e., by Seeger et al.).[18] Medical record review 
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in some databases have shown positive predictive value of close to 90% for these codes, 

suggesting they perform quite well.[34] If we decide to use Medicare-linked North Carolina 

Data Warehouse data for computing inverse probability of censoring weights in patients from 

2015 (see covariates below), we will also translate these ICD-9 codes to ICD-10 codes. 

When identifying major bleeding events, we will also use ICD-9 codes in inpatient and 

outpatient claims. These definitions are similar to and adapted from the definitions used in the 

other observational studies in claims-based data, particular Seeger et al, and map directly to 

the trial outcomes.[18] These codes and definitions have been shown to have positive 

predicted values between 80% and 90% with medical chart review in claims databases, 

particularly in the setting of anticoagulant-associated adverse events.[35, 36] An additional 

analysis will be carried out separating gastrointestinal hemorrhage from other major bleeding. 

Again, these codes will be translated to ICD-10 codes if we extend the study window to take 

advantage of the Medicare to North Carolina Data Warehouse linkage. Mortality will be taken 

directly from the Medicare data. 

 

Exposure Assessment in Medicare 

Prescription claims data for Medicare beneficiaries will be used to identify warfarin and 

dabigatran initiators from 2010 to October 2015. Individuals will be defined as initiators if the 

days supply from their last prescription for an oral anticoagulant ran out at least 60 days prior 

to the initial prescription. We will perform sensitivity analyses with 90 and 180 day washout 

periods for identifying treatment initiation. In the analysis censoring at discontinuation 

individuals’ follow-up time will be censored after switching medications as or having a 30-day 

gap in novel oral anticoagulant coverage or a 45 day gap in warfarin coverage, with the larger 

gap for warfarin provided due to the fact that pharmacy days’ supply may be out of sync with 

the way patients are taking warfarin due to changes in directions for use at anticoagulation 

management appointments. There will be pill carry-over for dabigatran but not warfarin users 

for similar reasons. To help identify warfarin initiators who may start to pay purely out of 

pocket, CPT codes for INR draws (CPTs 85610, 99363, and 99364)[37] will “refresh” warfarin 

prescriptions and extend the length of follow-up for thirty days from the time of the CPT code. 



38 
 

Individuals will only be followed after their first initiation, even if they have multiple periods 

that qualify with a sufficient wash-out period. In the intention-to-treat analysis, individuals will 

be followed until death. 

 

Covariate Assessment in Medicare 

We will be assessing three kinds of covariates in the Medicare cohort: 1) effect measure 

modifiers, 2) confounders, and 3) censoring covariates. 

Effect measure modifiers: Effect measure modifiers in the Medicare cohort will be assessed at 

the date of treatment initiation for the Medicare cohort and the date of switching to dabigatran 

or the date of matched warfarin treatment continuation in the prevalent user cohort. We will 

use a lookback period of one year in claims data to assess the presence of the variables in the 

prevalent user cohort, we’ll identify covariates 1 year prior to the date of matching for the 

warfarin cohort, rather than 1 year prior to baseline. We may also explore the use of all-

available lookback period approaches in sensitivity analyses as they may more directly parallel 

the assessment of history of hypertension in the RE-LY trial. 

Confounding variables: Confounding variables will be assessed at the date of treatment 

initiation for the Medicare cohort and the date of switching to dabigatran or the date of 

matched warfarin treatment continuation in the prevalent user cohort, with the same one-year 

and all-available lookback approaches as the effect measure modifiers. The specific variables 

included are based upon a directed acyclic graph which indicates which variables form a 

minimally sufficient adjustment set in the Medicare cohort that close all open backdoor paths 

between treatment and the outcomes. Because the set of variables that affect treatment 

choice are identical with respect to both outcomes and stroke and major bleeding events share 

many risk factors, the same adjustment set will be used in each analysis. The set of variables 

can be defended into three main categories: demographics (age, sex, race, and socioeconomic 

status), comorbid conditions (transient ischemic attack, congestive heart failure, diabetes, 

smoking, weight, alcoholism, history of bleeding, and frailty), and past medication use (past 

warfarin use). The associations between the demographics, comorbidities, and outcome was 

built based upon literature review of various epidemiological studies and cardiovascular and 
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risk scores including the CHADS2 score[38] and the Framingham Risk Score.[39] The associations 

between each of these variables and whether a patient might use dabigatran rather than 

warfarin came from questions regarding prescribing preferences to a medical professional 

working in an anticoagulation clinic, our literature review, and treatment guidelines.[5] As can 

be seen in the graph analyses requiring individuals to stay on treatment in this context involve 

removing a potential mediator of treatment effect (potential for discontinuing the treatment in 

question). We could use linked North Carolina Data Warehouse medical record data or linked 

Medicare Current Beneficiary Survey data to augment key confounders with poor capture in 

claims like weight and smoking using multiple imputation to estimate those distributions in the 

overall Medicare AF cohort in each of the analyses. 

Censoring weight covariates: We will also build censoring weights using effect measure 

modifiers and confounders in the Medicare population for use in analyses condition on staying 

on initial treatment and ensure that the population that continues on treatment is standardized 

to look like the initial population in the Medicare target population; otherwise, as discussed in 

Covariate Assessment in the RE-LY Trial, selective dropout in this estimate could lead to either 

bias in internal validity (only healthy individuals stay on warfarin, while unhealthy users stay on 

both medication) or external validity (the target and trial populations change differently over 

time from dropout). Weights would be estimated separately within the Medicare population 

from the RE-LY population because the processes leading to discontinuation are likely quite 

different between the two populations; the discontinuation rates are much higher in claims 

than RE-LY. 

9.4 Study size 

We anticipate a cohort of approximately 157,000 Medicare beneficiaries based upon 

extrapolation from the FDAs matched study in the 100% Medicare sample.[15] They observed 

roughly 340,000 patients over a period of 26 months, while we will observe 20% of that 

quantity over a longer follow-up period of 60 months for a total of approximately 157,000 

participants. We may observe fewer warfarin participants given historical warfarin trends over 

time, however, and we also have more stringent inclusion and exclusion criteria because of our 

attempts to mimic trial inclusion. Since the precision of the Aim 1 and Aim 3 analyses rely 
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primarily on the number of events in the RE-LY trial population, as well as their similarity to the 

Medicare target populations, the exact amount of power and precision of these analyses is 

unclear. Past transport analyses[40, 41] have shown somewhat less precision as the original 

trial with increases in the standard error after applying transport weights, but given the size of 

the original RE-LY trial treatment effects with respect to stroke, bleeding, and mortality this will 

still allow for reasonable inference and observation of whether effects are enhanced or 

attenuated. Most importantly, the Aim 1 estimates will be the first attempt to leverage 

randomized clinical trial data on atrial fibrillation patients while still attempting to estimate a 

treatment effect in real-world Medicare patients with atrial fibrillation, making them the best 

way to accurately generalize to these larger populations. 

Assuming a sample size of 157,000 Medicare beneficiaries will also provide sufficient power for 

the Aim 2 analyses estimating treatment effects using only the observational data. Given the 

FDA study’s stroke rate of roughly 12.6 events/1000 person-years, if we observe a similar 

average follow-up time of about 0.28 person-years per individual we would see a total of 

43,960 person-years of follow-up and 553 stroke events, a slightly larger number than the FDA 

study. The other outcomes we will be investigating in Aim 2 (bleeding and death) will be much 

more common than stroke, as shown by the bleeding analysis in the 5% Medicare sample.[16] 

These analyses will also be the ideal benchmark to compare the results of observational to 

weighted trial estimates because they will be calculated in the same target population as the 

Aim 1 analysis. 

9.5 Data management 

Analyses will be conducted in SAS 9.4 for Window. Because the individual-level Medicare data 

must remain on their private server and the individual-level RE-LY trial data must remain on the 

CTDT server, we will have to adopt a unique data management plan for this project. 

In order to construct the weighting models we will use to make the RE-LY trial and Medicare 

populations similar, we will have to consolidate the data in some fashion. Rather than try to 

combine the data on one platform and require combination of individual data, we propose 

exporting tables of the joint distributions of RE-LY trial patient characteristics that will be used 
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in the weighting models from the CSDR platform onto the outside server. These tables will 

simply be counts of the number of patients in the trial with each possible joint covariate 

distribution (i.e., one row will be the number of patients age 75 with hypertension, diabetes, 

congestive heart failure, kidney failure, a history of bleeding, past warfarin use, and any other 

effect modifiers; another row will be the number of patients with those characteristics but no 

past warfarin use; and so forth).These tables will not include birth dates, treatment, outcomes, 

treatment initiation dates, region, subsequent treatment adherence, or any identifiers. Only 

this aggregated data will be exported from the platform with no individual patient data being 

removed. We will combine this data with the Medicare data on the Sheps server to create the 

models we will use to estimate sampling probabilities for each covariate pattern. The 

coefficients of the betas in these models will then be returned to the CTDT server for use in 

constructing inverse odds of sampling weights for use in our two main analyses. 

In order to perform our analyses comparing outcomes in the RE-LY trial to outcomes in the 

Medicare patients on dabigatran and warfarin (separately) we will need to bring data on the 

outcomes in Medicare patients onto the CTDT server. Because of concerns about individual-

level outcomes that could be inferred from survival curve data, we will instead bring cumulative 

incidence step functions at each one-week interval. As soon as the project is complete, all 

Medicare-derived survival data will be removed from CTDT and all tabular RE-LY trial covariates 

will be removed from the Sheps server. In the interim, each data set will be kept only on secure 

servers and never on laptops or personal electronic devices. 

9.6 Data analysis 

We will 1) estimate 1 and 2-year risk differences comparing warfarin from NOACs in the 

Medicare AF population with transport methods and assess whether key assumptions have 

been met, 2) estimate 1 and 2-year risk differences using observational epidemiologic methods 

from only the Medicare AF population and 3) assess the impact of creating misclassified and 

missing data on effect measure modifiers using real data. 

Aim 1.1: Assessing Transportability 
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Methods (initial analysis): The first step in this process is comparison of unadjusted risk of 

stroke, bleeding, and death in the individuals randomized to dabigatran in RE-LY to the 

unadjusted risk of each of the outcomes in the Medicare dabigatran patients (with a similar 

comparison for the warfarin patients in the RE-LY trial and Medicare). This comparison will be 

conducted both visually by overlaying the unadjusted Aalen-Johansen cumulative incidence 

curves and plotting the risk difference between the RE-LY trial and Medicare cohorts over time 

as well as quantitatively by computing risk differences at 6, 12, 18, and 24 months. Variances 

will be obtained with bootstrapping with 1000 replicates, bootstrapping populations before 

limiting to complete cases or performing subsample validation. For both groups, follow-up will 

be censored at discontinuation or switching in the main analysis and inverse probability of 

selection weights will be used to correct for potential bias; an intention-to-treat analysis will 

also be applied. 

Methods (inverse odds of sampling weights): We will also assess whether weighting by 

measured effect measure modifiers remediates the disparity in outcomes between the groups, 

now relying on the export of count data on the joint distributions of various effect measure 

modifiers. We construct weights from a model assessing sampling into the RE-LY trial from the 

Medicare AF cohort within strata of exposure X (where X is either warfarin or dabigatran) in the 

target population; since exposure was randomized within the trial we can treat the trial cohort 

as having both exposures when building this model. Odds weights are necessary so that the 

trial population is not assumed to be part of the target population. If individuals are on 

treatment X in the RE-LY trial, they are weighted according to equation 4 with the probabilities 

being calculated from a logistic regression model, where X is either warfarin or dabigatran and 

EMM represents the set of all selected effect measure modifying covariates and interaction 

terms. 

𝑠𝐼𝑂𝑆𝑊 = (
𝑃(𝑅𝐸 − 𝐿𝑌 𝑡𝑟𝑖𝑎𝑙 | 𝑋)

1 − 𝑃(𝑅𝐸 − 𝐿𝑌 𝑡𝑟𝑖𝑎𝑙 | 𝑋)
) ∗ (

1 − 𝑃(𝑅𝐸 − 𝐿𝑌 𝑡𝑟𝑖𝑎𝑙 | 𝐸𝑀𝑀, 𝑋)

𝑃(𝑅𝐸 − 𝐿𝑌 𝑡𝑟𝑖𝑎𝑙 | 𝐸𝑀𝑀, 𝑋)
) 
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Individuals in Medicare will receive weights of 1. We will use quadratic restricted splines for age 

and three-way interactions between each term when fitting the logistic regression models to 

account for complex types of effect measure modification, provided there is enough data for it. 

Other statistical considerations: We will repeat the survival analysis using these weights to 

construct the Aalen-Johansen cumulative incidence curves for the RE-LY trial and Medicare 

cohorts (separately for each anticoagulant) and compare them visually and quantitatively with 

risk differences at 6, 12, 18, and 24 months just as we did the crude cumulative incidence 

curves. Variances would be obtained with bootstraps of 1000 replicates, making sure to 

bootstrap both populations before taking complete cases or conducting any form of imputation 

or subsample validation. If the weighted trial and target population curves differ and there is a 

non-null treatment effect, it is impossible to have taken into account all modifiers that differ 

between the groups on both scales, making it less likely all modifiers of the risk difference have 

been controlled for and increasing the possibility that the assumptions necessary for 

transportability have been violated. These analyses will be particularly important to evaluate 

the performance of warfarin initiators in Medicare relative to warfarin patients in the RE-LY 

trial. We will also assess transportability after limiting ourselves to patients in the Medicare 

cohort with various predicted probabilities of frailty based on the frailty prediction algorithm 

created by Faurot et al.[31] to help eliminate potential for including individuals in our target 

populations that were not trial-eligible due to high frailty or short life expectancy. If these 

frailty-restricted Medicare populations have more similar outcomes to the RE-LY trial 

participants than the original Medicare cohort, Aim 1.2 and Aim 2 will use them as additional 

target populations. 

 

Aim 1.2: Transporting Treatment Effects 

Weighting methods: Normal inverse probability of treatment weights methods typically 

eliminate confounding by creating exposed and unexposed pseudo-populations with identical 

confounder distributions after estimating the probability of exposure condition on various 

covariates. With IOSW, we instead transform the RE-LY trial population into a pseudo-
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population with an identical distribution of baseline effect measure modifiers as the Medicare 

AF population[24] by combining the joint categorical modifier RE-LY data and Medicare AF data 

and using logistic regression to identify the probability of selection based upon the selected 

effect measure modifiers. If individuals are enrolled in RE-LY, they receive stabilized inverse 

odds of sampling weights (sIOSW) based on this equation:  

(𝑠𝐼𝑂𝑆𝑊) = (
𝑃(𝑅𝐸 − 𝐿𝑌 𝑡𝑟𝑖𝑎𝑙)

1 − 𝑃(𝑅𝐸 − 𝐿𝑌 𝑡𝑟𝑖𝑎𝑙)
) ∗ (

1 − 𝑃(𝑅𝐸 − 𝐿𝑌 𝑡𝑟𝑖𝑎𝑙 | 𝐸𝑀𝑀)

𝑃(𝑅𝐸 − 𝐿𝑌 𝑡𝑟𝑖𝑎𝑙 | 𝐸𝑀𝑀)
) 

Unlike in Aim 1.1, Medicare patients will receive weights of 0 instead of 1 and the estimates are 

no longer conditional on the specific type of treatment received; X has dropped out of the 

equation. If there are model convergence issues or weights become large when we have three-

way interactions between most categorical terms (there is limited research on how large is too 

large in this transportability context; here, we will define large weights as single individuals 

having weights of > 5% of the population after stabilization) we will fit a model with two-way 

interaction terms and examine the marginal covariate balance using standardized mean 

differences between the target and RE-LY population. 

Follow-up and censoring: To reduce potential issues with differential persistence between the 

trial and target population estimates influencing the comparison, we will primarily focus on an 

analysis censoring trial individuals at treatment switching or discontinuation. Stepwise inverse 

probability of censoring weights based upon the set of EMM and confounders as described in 

Covariate Assessment in the RE-LY Trial and fit separately in the trial and target populations for 

each treatment will be used to prevent potential selection bias in this approach. We will also 

explore an intention-to-treat design as a secondary analysis. 

Other statistical considerations: The outcomes of interest (stroke, major bleeding, and death) 

will be compared on the risk difference scale by directly comparing the weighted survival curves 

in the RE-LY trial population (constructed with the above weights and Aalen-Johansen methods 

rather than assuming we can prevent competing risks[42]). The weighting process will be 

bootstrapped with 1000 iterations in order to generate 95% confidence limits for the risk 

differences, with both the trial and target populations being bootstrapped before any 
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imputation, limitation to complete cases, or subsample validation. This process will be repeated 

for each of the target populations of interest (warfarin initiators, dabigatran initiators, 

dabigatran initiators and switchers to dabigatran, and initiators of warfarin or dabigatran). If 

these estimates from Aim 1.2 differ from the results of the RE-LY trial, it lends credence to the 

idea that there are meaningful effect measure modifiers in place that were differentially 

selected for by the trial enrollment process. 

Aim 2.1: New User Active Comparator Design 

Methods (inverse probability of treatment weights): We will balancing the confounding 

variables between dabigatran and warfarin initiators using inverse probability of treatment 

weighting. To use these weights, we will estimate the probability of dabigatran initiation based 

upon the confounders described above fitting two-way interaction terms and additional terms 

as required to achieve marginal standardized mean differences as small as possible, with any 

major confounders with an SMD greater than 0.1 being unacceptable (though this is a fairly 

arbitrary cut point).[43] Stabilized inverse probability of treatment weights (sIPTW) will be 

assigned based upon the model predicted probabilities.[44] Dabigatran initiators are weighted 

using equation 2 and warfarin initiators with equation 3, where Zi represents the confounding 

variables used in the propensity score estimation. 

Equation 2: 𝑠𝐼𝑃𝑇𝑊𝐷𝑎𝑏𝑖 =
𝑃(𝑑𝑎𝑏𝑖𝑔𝑎𝑡𝑟𝑎𝑛)

𝑃(𝑑𝑎𝑏𝑖𝑔𝑎𝑡𝑟𝑎𝑛 | 𝑍𝑖)
 

Equation 3: 𝑠𝐼𝑃𝑇𝑊𝑊𝑎𝑟𝑓 =
1−𝑃(𝑑𝑎𝑏𝑖𝑔𝑎𝑡𝑟𝑎𝑛)

1−𝑃(𝑑𝑎𝑏𝑖𝑔𝑎𝑡𝑟𝑎𝑛 | 𝑍𝑖)
 

Methods (other statistical considerations): The outcomes of interest, 1 and 2-year stroke, major 

bleeding, and death will be compared by contrasting the IPTW and IPCW-weighted survival 

curves (constructed with Aalen-Johansen methods and the above weights for each individual) in 

the Medicare population at specific year intervals after applying sIPCW weights. We will 

bootstrap with 1000 replicates for estimating confidence intervals. Since sIPTW will estimate 

the treatment effect in the entire population and we would like treatment effect estimates in 

the dabigatran and warfarin users for comparison with the estimates obtained with sIOSW, we 
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will also use standardized mortality ratio (SMR)[45] weights to estimate treatment effects in 

dabigatran and warfarin users specifically. 

Aim 2.2: Prevalent User Design 

Methods (prevalent user design): In this design, time-conditional propensity scores taking into 

account time-varying covariates are used to match individuals switching from a traditional 

therapy to a newly marketed one with participants that have taken the traditional therapy for 

the same amount of time (or the same number of prescriptions) and continued on the 

traditional therapy with similar distributions of relevant confounders. If someone switches from 

warfarin to dabigatran after 180 days of warfarin follow-up, a person with the same number of 

days on warfarin who continued on warfarin is selected as their match. Because of the 

enormous heterogeneity in days supply across warfarin prescriptions, we will use the months 

elapsed since individuals first initiated warfarin rather than the absolute number of 

prescriptions. We will also experiment with “capping” the months since initiation when 

matching to warfarin users to switchers rather than searching for perfect matches, as most of 

the heterogeneity in risk of stroke and bleeding is likely in the initial time period when dosage is 

being frequently adjusted. We will also explore being increasing restrictive with respect to our 

definition of switching (requiring continuous new use of warfarin up until dabigatran initiation 

versus requiring new use of warfarin before dabigatran initiation vs requiring any use of 

warfarin before dabigatran initiation). 

Methods (other statistical considerations): We will use similar bootstrapping, Aalen-Johansen, 

and sIPCW methods as in Aim 2.1 to obtain 1 and 2-year risk differences in this target 

population as well. 

 

Aim 2.3: Contrasting Treatment Effect Estimates 

Methods: The estimates obtained under these Aim 1 will be directly contrasted with the 

estimates obtained under the first approach in Aim 2. This process will be repeated for each of 

the four target populations: 1) new users of warfarin or dabigatran; 2) new initiators of 
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warfarin; 3) new initiators of dabigatran; and 4) the dabigatran initiators and switchers to 

dabigatran. Comparisons will be performed relatively (dividing Aim 1 estimates by these Aim 2 

estimates), absolutely (subtracting the Aim 1 estimates from the Aim 2 estimate), and 

graphically using forest plots of point estimates and 95% confidence limits, with particular 

attention paid to shifts in estimate across the null between methods. If the results in Aim 2.1 or 

Aim 2.2 differ from those in Aim 1, either additional or incorrectly modeled confounding 

factors exist (e.g. socioeconomic status has an unblocked path to the outcome), additional or 

incorrectly modeled effect measure modifiers exist (e.g. better management in the trial than 

the target population), or both. 

 

Aim 3 Approach 

Overview: Missing data and misclassification can be problematic when it comes to the internal 

validity of randomized controlled trials and observational studies,[46-50] where they can cause 

anywhere from no bias at all to a large amount of bias. Little attention has been paid, however, 

to the problems that missing data and misclassification can potentially cause when generalizing 

or transporting treatment effects to target populations, though the difference in estimates 

between complete cases and multiply imputed cohorts has been assessed.[40] The current 

analysis presents an excellent opportunity to use real-world data in a case study where the type 

of missingness and misclassification can be manipulated by investigators. Missingness is more 

likely in the context of trials and prospective longitudinal cohort studies, while misclassification 

is more likely in the context of claims-based studies. An opportunity to study the ramifications 

of both at once would help further understanding of transporting both trial and observational 

studies to particular target populations. 

Aim 3.1: Missing Data 

Objectives: In Aim 3.1, we will identify the extent to which effect measure modifying 

covariates 1) missing completely at random (MCAR) 2) missing at random (MAR) or 3) missing 

not at random (MNAR) in a) the RE-LY trial or b) the Medicare population would alter the target 

population treatment effect estimates and their associated variance after applying the sIOSW 
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used in Aim 1.2 and various techniques for dealing with missing data including complete case 

analysis, missingness weights, and multiple imputation. 

Methods: We will first assume the RCT and Medicare complete case data are correctly 

classified, transport an absolute-scale treatment effect on stroke and bleeding risk, and use 

these results as the baseline. Alternatively, we could instead estimate relationships between all 

of the variables in the sampling and treatment effect models and re-simulate potential 

datasets. Regardless of the approach used, we would subsequently induce a variety of 

missingness scenarios and observe the resulting change in precision and estimate when using 1) 

complete case analysis, 2) missingness weights, and 3) multiple imputation. Table 1 illustrates 

the specific scenarios that will be investigated with each of several variables (hypertension 

history, diabetes history, TIA history, and bleeding history), manipulating each variable to 

varying levels of missingness based upon the below equation describing a logistic relationship 

between the probability of missingness and various variables. 

𝑃𝑚𝑖𝑠𝑠𝑖𝑛𝑔(𝐶𝑜𝑣) =
log(𝛽𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 +  𝛽𝑎𝑔𝑒 ∗ 𝑎𝑔𝑒 + 𝛽𝑣𝑖𝑡𝐾𝑎𝑛𝑡𝑎𝑔 ∗ 𝑣𝑖𝑡𝐾𝑎𝑛𝑡𝑎𝑔 +  𝛽𝐶𝑜𝑣 ∗ 𝐶𝑜𝑣)

(1 + log (𝛽𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 +  𝛽𝑎𝑔𝑒 ∗ 𝑎𝑔𝑒 + 𝛽𝑣𝑖𝑡𝐾𝑎𝑛𝑡𝑎𝑔 ∗ 𝑣𝑖𝑡𝐾𝑎𝑛𝑡𝑎𝑔 +  𝛽𝐶𝑜𝑣 ∗ 𝐶𝑜𝑣)
 

Table 1: Different scenarios examining the impact of missingness on bias and variance of target 

population risk differences. 

Scenario # Description of EMM* missingness e(MIssingness intercepts) e(MIssingness coefficients) 

1 Baseline scenario 0 0 

2 Missing completely at random in RE-LY 0.1; 0.3; 0.5 0 

3 Missing completely at random in 

Medicare 

0.1; 0.3; 0.5 0 

4 Missing at random** in RE-LY 0.1; 0.3; 0.5 0.15, 1.5; 0.2, 2; 0.4, 4 

5 Missing at random** in Medicare 0.1; 0.3; 0.5 0.15, 1.5; 0.2, 2; 0.4, 4 
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Here, 𝛽𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 refers to the log-odds for the baseline prevalence of missingness; 𝛽𝑎𝑔𝑒 is the 

increase in log-odds of missingness for a one-unit increase in age; 𝛽𝑣𝑖𝑡𝐾𝑎𝑛𝑡𝑎𝑔 is the increase in 

log-odds of missingness  if an individual has a history of use of vitamin K antagonists; and 𝛽𝐶𝑜𝑣 

is the increase in log-odds associated with the presence of the covariate in question. 

In Scenario 1 in Table 1, for example, all the β coefficients will be equal to 0, as there will be no 

missingness at all. Scenario 2a would change the value of the 𝛽𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 term for RE-LY 

participants from 0 to 0.1; Scenario 2b would change it to 0.3; and Scenario 2c would change it 

to 0.5. Scenarios 3a through 3c would mirror this in Medicare population. In both of these 

cases, data on the covariate would be MCAR. Scenarios 4 and 5 begin to make the variables 

MAR by making variables missing dependent upon the other key modifiers of age and past use 

of vitamin K antagonists. Finally, Scenarios 6 and 7 introduce a non-zero value for 𝛽𝐶𝑜𝑣 at which 

point the covariate is MNAR in RE-LY (Scenario 6) or Medicare (Scenario 7). The values were 

selected to represent a broad spectrum of potential associations and extent of missingness. 

Each of the scenarios will be repeated for each of the variables, as well as combinations in 

which missingness is incremental (e.g. only individuals missing variable 1 can be missing 

variable 2). 

Missingness methods: Complete case analysis will be performed by removing all individuals 

with missing values for the variable after bootstrapping, then conducting the weighted analysis. 

Missingness weights will be computed using logistic regression and the variables listed as effect 

measure modifiers. Multiple imputation will also be conducted feeding the effect measure 

modifying variables in as the basis for the imputation.  

6 Missing not at random*** in RE-LY 0.1; 0.3; 0.5 0.15, 1.5; 0.2, 2; 0.4, 4 

7 Missing not at random*** in Medicare 0.1; 0.3; 0.5 0.15, 1.5; 0.2, 2; 0.4, 4 

*EMM = Effect measure modifier (hypertension history, diabetes history, transient ischemic attack 

history, bleeding event history) 

**Missing inducers = age and past use of vitamin K antagonists, respectively 

***Having the EMM will give you 1.5x, 2.0x, or 3.0x the odds of missing the variable 
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Final steps: After missingness is dealt with, the same models and operations used in Aim 1 and 

Aim 2 will be used to estimate 1 and 2-year risk differences for stroke, bleeding, and death in 

the population of warfarin and dabigatran initiators, with 1000 bootstrapped replicates to 

estimate confidence intervals. These estimates will be compared with the risk difference 

estimates from the initial analysis and with one another graphically with forest plots and 

statistically by quantifying the difference in estimate and variance in each scenario. 

Aim 3.2: Misclassified Data 

Table 2: List of different scenarios examining the impact of misclassification on bias and variance of 

target population risk differences. 

Scenario # Description of EMM* 

misclassification 

𝑒(Misclassification intercepts) 𝑒(misclassification coefficients) 

1 Baseline scenario 0 0 

2 Misclassified completely 

at random in RE-LY 

0.1; 0.3; 0.5 0 

3 Misclassified completely 

at random in Medicare 

0.1; 0.3; 0.5 0 

4 Misclassified at random in 

RE-LY 

0.1; 0.3; 0.5 0.15, 1.5; 0.2, 2; 0.4, 4 

5 Misclassified at random in 

Medicare 

0.1; 0.3; 0.5 0.15, 1.5; 0.2, 2; 0.4, 4 

6 Misclassified not at 

random*** in RE-LY 

0.1; 0.3; 0.5 0.15, 1.5; 0.2, 2; 0.4, 4 

7 Misclassified not at 

random*** in Medicare 

0.1; 0.3; 0.5 0.15, 1.5; 0.2, 2; 0.4, 4 

*EMM = Effect measure modifier (hypertension history, diabetes history, transient ischemic attack 

history, bleeding event history) 
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**Misclassification inducers = age and past use of vitamin K antagonists 

***Having hypertension history (when misclassifying non-hypertension) or diabetes (when 

misclassifying hypertension) will give you 1.5x/2.0x/3.0x the odds of misclassification, and individuals 

with HTN (non-hypertension) or DM (hypertension) will have 0.5x/0.33x/0.25x the probability of 

being selected into the subsample. 

Methods for misclassification: Just as in Aim 3.1 the first step will be transporting an effect 

based upon either a complete case data set or some type of simulated results. Then we will 

induce a variety of misclassification scenarios in the same variables examined in Aim 3.1 

(described in Table 2), focusing on just one variable each time, and observe the resulting bias 

and change in precision when 1) there is no adjustment for misclassification or 2) a subset of 

the population has validation data that can be used to correct for some of the misclassification. 

Because we will be inducing misclassification in only one of the trial and target populations in 

each scenario, this misclassification will be differential with regards to sampling. The probability 

of misclassification will be calculated with an identical equation to the one used in Aim 3.1. 

These scenarios and the resulting equations parallel those in Aim 3.1 until the final two 

scenarios in which data is rendered MiscNAR. Instead of the value of the variables increasing 

the possibility of misclassification, they’ll instead rely on another variable (diabetes history for 

the analyses misclassifying hypertension; hypertension history for all other analyses) that is 

associated with selection for subsampling and is omitted from the subsample analysis and 

imputation.  

Dealing with misclassification: In Scenarios 1-5, we will assign each individual a 1% probability 

of being selected for subsampling. In Scenarios 6 and 7, individuals without the “not at random” 

causing variable (hypertension for most analyses, diabetes for hypertension analyses) will have 

a 1% probability of being selected for subsampling while other individuals will have a differing 

probability based upon the subscenario. After subsampling, we will calibrate the variables in 

the full sample using imputation methods predicting the chance of misclassification given age 

and past vitamin K antagonist use. We may also experiment with additional scenarios where 

only individuals with a positive value for the covariate have a chance of misclassification (i.e. 
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perfect specificity with no false positives), as that may be more common in claims-based 

studies than misclassifying someone who doesn’t have the covariate. 

Final steps: After attempting to remedy the misclassification, we will perform the same analyses 

used in Aim 1.2 to determine the change in estimate and its precision under each 

misclassification scenario and compare statistics the same way we did in Aim 3.1. 

9.7 Quality control 

We will not take any steps above and beyond those already conducted by the trial investigators 

(for the RE-LY trial data) and the maintainers of the Medicare data at the UNC Sheps Center (for 

the Medicare data). Both of these data sets are cleaned and secured independently. All 

statistical programming run on both types of data will be archived for potential re-use and 

availability upon request. 

9.8 Limitations of the research methods 

There are three central limitations to the proposed research. The first is that we cannot 

guarantee that the Medicare population is a nationally representative sample of the future 

population of older adults with AF in the United States, especially as comorbidity patterns 

change in our aging population. All inferences we make about transported effect estimates and 

whether or not the assumptions necessary for effect estimate transport have been met will 

refer specifically to the Medicare target population being considered, rather than some 

abstract notion of perfect transportability. Still, this population represents an important 

benchmark that is a major target for trials like RE-LY. If RE-LY’s results cannot adequately 

transport to the Medicare population, it is unlikely results will be able to be transported to 

future groups of older adults. Moreover, this patient population is still an important population 

in which to understand the relative risks and benefits of dabigatran treatment. 

The second central limitation involves the methods used in Aim 1.1 to assess transportability. 

These methods are specific but not necessarily sensitive to situations in which key effect 

measure modifiers have not been measured. It is possible for the hazard ratio comparing 

warfarin patients in RE-LY to target population warfarin patients to be 1 even if there are still 
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important unmeasured effect modifiers on the scale we are interested in, as we can only 

compare one arm and modifiers may be “canceling” one another’s effect on the risk. In 

addition, we cannot guarantee which scale or scales (multiplicative, additive, or both) the 

undetected factors are modifiers on, limiting our ability to say with certainty there are 

unmeasured modifiers on the scale we care about that differ between the two populations. If 

we have any interest in transporting both a ratio and absolute scale effect estimate, however, 

this limitation is ignorable. Even if we only care about one scale the analysis still encourages 

additional caution in describing accuracy of the effects we are estimating. 

The third central limitation also involves the methods used in Aim 1.1: they only work in the 

setting of a non-null treatment effect in your target population. Given the results of past 

studies and the trial itself, this does not seem likely to be the case, but it will be important to 

interpret Aim 1.1 results in light of this should Aim 1.2 show a treatment effect centered on the 

null. In light of this fact, we plan to conduct Aim 1.2 analyses for each target population 

regardless of the findings in Aim 1.1. If there are large gaps in outcome that raise concerns 

about transportability of non-null effects, they will be noted both during presentations and in 

any publications using information from Aim 1. 

 

9.9 Other aspects 

N/A 
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10. Protection of human subjects 

This study was reviewed and approved by the University of North Carolina at Chapel Hill 

Institutional Review Board. 
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11. Management and reporting of adverse events 

As we will not be collecting any new data on these participants, we will not be collecting any 

new adverse event data. However, if our study using the clinical trial data reveals any 

dramatically new findings, we will contact the appropriate individuals at Boehringer-Ingelheim. 
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12. Plans for disseminating and communicating study results 

We anticipate three papers from this project for submission to major academic journals. The 

first will be based on Aim 2.1 and Aim 2.2 and estimate a treatment effect in Medicare target 

populations using propensity score methods and a new user active comparator and a prevalent 

new user design. The second, based on Aim 1, will document the methods generating the 

transported target population treatment effect while contrasting it with the observational 

estimate in the target population, alongside the analysis of differences in stroke and bleeding 

risk after adjusting for various risk factors. The third will describe the impact of rendering trial 

and target population data missing or misclassified on the transported treatment effect 

estimates.  We also expect preliminary work from the first paper to be submitted to the 2019 

International Society for Pharmacoepidemiology annual meeting for poster or oral 

presentation, with additional potential submission to the 2019 Society for Epidemiologic 

Research meeting.  In addition to these papers and publications, the first analysis will become 

part of Michael Webster-Clark's dissertation work and be housed at UNC libraries. 
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Annex 1. List of stand-alone documents 
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Annex 2. ENCePP checklist for study protocols 
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Annex 3. Additional information 

Causal diagram for identifying potential effect modifiers of stroke: 

 

Causal diagram for identifying potential effect modifiers of bleeding: 
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Causal diagram for identification of confounders: 

 


