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Abstract

Introduction: Numerous dementia risk prediction models have been developed in the past decade.
However, methodological limitations of the analytical tools used may hamper their ability to generate
reliable dementia risk scores. We aim to review the used methodologies.

Methods: We systematically reviewed the literature from March 2014 to September 2018 for pub-
lications presenting a dementia risk prediction model. We critically discuss the analytical techniques
used in the literature.

Results: In total 137 publications were included in the qualitative synthesis. Three techniques were
identified as the most commonly used methodologies: machine learning, logistic regression, and Cox
regression.

Discussion: We identified three major methodological weaknesses: (1) over-reliance on one data
source, (2) poor verification of statistical assumptions of Cox and logistic regression, and (3) lack
of validation. The use of larger and more diverse data sets is recommended. Assumptions should
be tested thoroughly, and actions should be taken if deviations are detected.

© 2019 The Authors. Published by Elsevier Inc. on behalf of the Alzheimer’s Association. This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/
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1. Introduction

The prevalence of dementia is increasing globally,
because of the rapid aging of the population. In 2015, 47
million people were affected by dementia worldwide,
whereas dementia prevalence is predicted to almost triple
by 2050 [1]. There is no cure for dementia yet; hence, the
early identification of individuals at higher risk of devel-
oping dementia becomes critical, as this may provide a win-
dow of opportunity to adopt lifestyle changes to reduce
dementia risk [1,2].

Numerous dementia risk prediction models to identify
individuals at higher risk have been developed in the
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past decade. Three systematic reviews and meta-analyses
summarizing dementia risk prediction models were pub-
lished over the past years [3-5]. Stephan et al. [3] and
Tang et al. [4] mainly focused on the critique of the vari-
ables selected for inclusion and the assessment of models’
prognostic performance, whereas Hou et al. [5] reviewed
published dementia risk models in terms of sensitivity,
specificity, and area under the curve from receiving oper-
ating characteristic analysis. Stephan et al. [3] and Tang
et al. [4] concluded that none of the published models
could be recommended for dementia risk prediction,
largely because of multiple methodological weaknesses
of the models or study designs for their derivation. Meth-
odological limitations of the models reviewed included the
lack of discrimination of dementia type, lack of internal
and external validations of the models, the long interval
elapsed between assessments of individuals at risk, and
notably, concerns about the analytical techniques used
were also highlighted. Hou et al. [5] recommended four
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risk prediction models for different populations (midlife,
late-life, patients with diabetes, or mild cognitive impair-
ment (MCI)) with acceptable predictive ability (area under
the curve >0.74), but still concluded that the models
showed methodological limitations, such as lack of
external validation.

To date, there is no systematic literature review focusing
solely on the methodological approaches used in the demen-
tia risk literature. In the present study, we aim to identify and
critically discuss the analytical techniques used in the de-
mentia risk literature and provide suggestions for future pre-
diction model developments, to increase model reliability
and accuracy.

2. Methods
2.1. Search strategy

We searched MEDLINE, Embase, Scopus, and IST Web
of Science for articles published from March 1, 2014 to
September 17, 2018 using combinations of the following
terms: “dementia,” “prediction,” “development,” “receiver
operating characteristic,” “sensitivity,” “specificity,” “area
under the curve,” and ‘“concordance statistic.” When
possible, terms were mapped to Medical Subject Headings.
We searched relevant systematic literature reviews for addi-
tional references. March 1, 2014 was chosen as earliest date
for this review as it is the upper limit of Tang et al.’s [4] de-
mentia risk review (see Supplementary Material 1 for an
example of the search strategy). An updated search was per-
formed from September 17, 2018 to June 12, 2019.

EL N3

LR T3

2.2. Selection of studies

First, two independent reviewers (I.C. and J.G.) screened
titles and abstracts for suitable articles. Next, full-text arti-
cles were screened for eligibility by one reviewer (J.G.).
The following eligibility criteria was used to select the rele-
vant publications: (1) the study has to use a population-based
sample or a sample restricted to individuals with MCI; (2)
the article provided a model to predict dementia (all-type de-
mentia) risk; (3) the article described the statistical tech-
nique that was used for the model development; (4) the
article was written in English. Conference abstracts and vali-
dation studies were excluded from the review. Any disagree-
ments were resolved by consensus between two authors (I.C.
and J.G.), or if necessary, by a third author (G.M.T.) if the
disagreement could not be resolved.

2.3. Data extraction

Data were extracted by three authors (I.C.,J.G.,and S.D.)
from each article. Information collected included data
source, sample size, country, study population, dementia
type, length of follow-up, statistical technique used for
model development, tested assumptions, and validation
method. Only information relevant to our review was ex-

tracted from the articles, that is, when studies investigated
several aims, we only reported the statistical method and
sample that were used for the prediction of dementia risk.
In one case a reference is counted twice in the results, as it
reports risk models developed from two separate techniques
(see Supplementary Material 2 for tables describing publica-
tions extracted for review).

3. Results

A total of 2600 nonduplicated articles were identified
from the database search and additional relevant references.
During the title and abstract review phase 2328 articles were
excluded. Full texts were screened for 272 articles, of which
137 were found to be eligible for inclusion in the quantitative
synthesis. The most frequent reasons for exclusion were the
article was a conference abstract, no prediction model for de-
mentia risk was provided, outcomes other than dementia risk
were predicted (e.g., combination of MCI and Alzheimer’s
disease (AD)), and nonpopulation-based samples or samples
not consisting of MCI individuals were used (e.g., sample
consisting of menopausal women) (see Fig. 1, for a flow
chart of the review, the Preferred Reporting Items for Sys-
tematic Reviews and Meta-Analyses flow chart diagram
template was used [6]).

3.1. Outcomes and populations

Population-based samples were used in 31 (31/138,
22.5%) publications and 107 (107/138, 77.5%) publications
used samples comprising MCI individuals for the develop-
ment of a dementia risk prediction model. In total, 137 study
populations were used for the development of the models, of
which 74 are unique. In total 60 (60/138, 43.5%) samples
were drawn from the Alzheimer’s Disease Neuroimaging
Initiative (ADNI) database. The sample size of the studies
reviewed ranged from 22 to 331,126 individuals, whereas
17 (17/138, 12.3%) studies had a sample size smaller than
100 participants. The follow-up time ranged from 1 to
>30 years. In 103 (103/138, 74.6%) publications AD was
the primary outcome. Other dementia types or a combination
of dementia types with AD were regarded as the outcome in
35 (35/138, 25.4%) publications, including: dementia any
type/not otherwise specified, vascular dementia, mixed de-
mentia, frontotemporal dementia, Huntington disease,
Lewy body dementia, multi-infarct type dementia, and Par-
kinson disease dementia. In 22 (22/138, 15.9%) publica-
tions, risk models were externally validated, whereas 46
(46/138, 33.3%) publications did not mention any validation
procedure.

3.2. Analytical approaches

Machine learning (n = 55) was the most used technique
for the development of dementia risk prediction models. In
the publications selected for review, the support vector ma-
chine classifier (n = 17) was the most commonly used
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Fig. 1. Flow chart of review phases.

algorithm to predict dementia, followed by the disease state
index (n = 6) and the random forest classifier (n = 5). Three
studies used neural network algorithms to construct risk pre-
diction models. Several different feature selection methods
are used (including least absolute shrinkage and selection
operator, recursive feature elimination, or correlation-
based feature selection). In 48 (48/55, 87.3%) of the studies
that used machine learning algorithms, prediction models
were developed for individuals with MCI, whereas seven
(7/55, 12.7%) studies developed models for individuals
without clinically impaired cognition. Thirty-four (34/55,
61.8%) publications used the ADNI database. Twelve (12/
55,21.8%) models are externally validated with independent
samples, of which 10 were MCI populations and two
population-based, whereas 49 (49/55, 89.1%) models are
internally validated using different cross-validation methods
(e.g., 10-fold cross-validation), two (2/55, 3.6%) models are
neither externally nor internally validated.

Logistic regression was used in 31 publications for the
development of dementia risk prediction models. One study
fitted a multinomial logistic regression including mortality

as a third outcome and another study included follow-up
time in the model. Eight (8/31, 25.8%) samples are drawn
from the ADNI database. Five (5/31, 16.1%) studies checked
for multicollinearity among the independent variables and
two studies additionally checked the linearity assumption.
Two (2/31, 6.5%) studies checked if the data were normally
distributed. None of the dementia risk prediction models
derived from logistic regression are externally validated.
Eleven (11/31, 35.5%) models are internally validated using
a cross-validation method, bootstrapping, or by splitting the
sample into a testing and validation set, whereas 20 (20/31,
64.5%) models were not validated.

Cox proportional hazards regression (Cox regression)
models were used for the development of 25 dementia
risk prediction models. Of these, one study used time-
dependent covariates in the Cox model, one study
included death as a competing risk, one further study
used a penalized Cox regression, and another study used
age as the time axis. Seven (7/25, 28%) models are devel-
oped based on data from the ADNI database. Eight (8/25,
32%) studies verified the proportional hazard assumption
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Fig. 2. Limitations of included studies stratified by technique used. *Study used a sample <100 individuals, did not test the assumptions (if applicable), and did
not validate the results internally or externally. 'Not applicable (N/A). ”Percentage calculated for whole group (22/27); however, only 22 studies needed to test

assumptions (22/22, 100%).

and three studies additionally checked the linearity
assumption. Four (4/25, 16%) risk models were externally
validated with independent samples, of which one was an
MCI population and three were population-based. Twelve
(12/25, 48%) risk models are validated internally, using
cross-validation methods or bootstrapping, whereas 12
(12/25, 48%) risk models are neither externally nor inter-
nally validated.

Five studies used a combination of a machine learning
approach and a regression analysis (e.g., disease state in-
dex and Cox regression), four a combination of two re-
gressions (e.g., logistic and Cox regression), two a joint
longitudinal survival model, two an analysis of variance,
two a bilinear regression, and two a receiver operating
characteristic curve analysis to develop a dementia risk
prediction model.

Less frequently used techniques were linear regres-
sion (n = 1), polynomial regression (n = 1), x° test
and Kruskal-Wallis test (n = 1), power of the r-sum
score (n 1), Poisson regression (n = 1), illness-
death model (n = 1), multivariate ordinal regression
(n = 1), event-based probabilistic model (n = 1), mixed
linear model (n = 1), and general linear model (n = 1).
An overview of the limitations found in the studies is
provided in Fig. 2.

4. Discussion

Our review of analytical approaches in dementia risk pre-
diction identified three techniques as the most commonly

used methodologies: machine learning, Cox regression,
and logistic regression models.

4.1. Machine learning

A growing number of dementia risk prediction models
have been developed using machine learning algorithms
[7,8]. Machine learning consists of computational
methods, which are able to find meaningful patterns in the
data [9], while using experience to improve and make pre-
dictions [10]. This means machine learning techniques can
explore the structure of the data, in terms of associations be-
tween the variables, without having a theory of how the
structure looks like. This might make them better suited to
detect associations between variables than logistic or Cox
regression [11]. However, as discussed by Pellegrini et al.
[8], in a published systematic literature and meta-analyses
of machine learning techniques in neuroimaging for cogni-
tive impairment and dementia, studies using machine
learning algorithms also show limitations. Generalizability
of results generated from the application of these techniques
and their transfer to clinical use are likely to be constrained
because of their over-reliance on one data source, the fact
that they commonly use data from populations with greater
proportions of cases (i.e., individuals with the diseases) and
lower proportions of control subjects, they are usually
derived using only one machine learning method and the
application of varying validation methods [7,8].
Furthermore, although machine learning methods perform
well (accuracy >0.8) in differentiating healthy control
subjects from individuals with dementia, their performance
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when identifying individuals at high risk of developing
dementia is poorer (accuracy from 0.5 to 0.85) [8]. Similar
methodological limitations were found in the present re-
view: more than half the studies used the same data source
(34/55, 61.8%), only six (7/55, 12.7%) studies investigated
the prediction abilities of a machine learning method in a
non-MCI population and only 12 of 55 (21.8%) studies
externally validated their model. Relying mainly on one
data source and focusing on individuals already at a higher
risk of developing dementia results in limitations of clinical
relevance and generalizability. Furthermore, without addi-
tional studies externally validating these prediction models,
it is not clear if these models are overfitted and further limits
the generalizability of findings.

4.2. Logistic and Cox regression

Cox and logistic regression, two traditional statistical
techniques, are used frequently in dementia risk prediction
[4].

Despite their popularity, several features of logistic and
traditional Cox regression need to be reflected on when using
these methods in dementia risk prediction (for a comparison
of these approaches in general settings see Ingram and
Kleinman [12] and Peduzzi et al. [13], but it is also worth
remembering that although logistic regression aims at the
estimation of odds ratios, Cox modeling aims to estimate
hazard ratios over time). First, an aspect of both approaches
that is relevant to note is that they both generate static risk
predictions as they are based on a designated time O and
on data (baseline covariates) collected at a single time point
(time O or before). Extensions to time-dependent Cox
models exist that are appropriate for use when risk factors
themselves change over time [14]. Although not imple-
mented yet in dementia risk prediction, these extended
models are likely to be informative in the context of demen-
tia risk prediction as change in predictors over time is likely
to be more informative than a single value. However, if pre-
diction is short term, models with time-dependent variables
may not be necessary.

Second, although our review identified only one publica-
tion where a Cox model based on age was used, the choice of
the time axis in Cox modeling is a methodological aspect
that also needs consideration as different choices hamper
the comparison of results across (and within) studies.
When age is used as time axis, the analysis needs to be cor-
rected for delayed entry. A discussion of this issue in the
methodological literature and empirical demonstrations
showing high sensitivity of results to different choices can
be found in Pencina et al. [15].

Third, both methods assume a data structure that may
not be adequately fulfilled when used in dementia predic-
tion. Both techniques assume linear relationships between
the independent and the dependent variables, that is, a
linear relationship between the log of the odds (logistic
regression) or the relative risk (Cox regression) and the co-

variates is assumed. Yet, this assumption is likely not to
hold for critical variables used as input in the model
(e.g., biomarker) [16]. Notably, our review identified only
five of 56 (8.9%) studies that explicitly tested the linearity
assumption. Cox regression additionally assumes propor-
tional hazards, which postulates that the impact of a prog-
nostic factor on dementia remains constant over the entire
follow-up. Only a third (8/25, 32%) of the identified studies
in our review that used Cox regression tested the propor-
tional hazards assumption. Violations of the underlying as-
sumptions in logistic and Cox regression result in biased
estimates [16,17]. Furthermore, merely five (5/56, 8.9%)
studies incorporated interactions in their regression
model. Although an interaction makes it harder to
interpret the estimates, it is still relevant and potentially
informative to test these.

4.3. Validation, sample size, and data source

External and internal validations are crucial steps when
developing a reliable prediction model. Although internal
validation ensures the robustness of the findings, that is,
there are no alternative explanations for the findings,
external validation provides information to which extent re-
sults can be generalized, that is, the model can be applied to a
wider population than the one from which it was developed
[18,19]. Although, the validation phase is highly
recommended in prediction models [20], a third of the
studies did not perform internal or external validation (46/
138, 33.3%). Of the 138 prediction models reviewed, only
14 (10.1%) studies validated their model internally and
externally. Too many studies did not perform any validation,
whereas too few studies performed both internal and
external validations. This is a poor state and the field would
benefit from a change in practice.

The data used for the development of a prediction model
are as important as the technique used for the derivation of
the model. Several studies (17/138, 12.3%) used a sample
smaller than 100 participants, which likely is a limitation
of these studies. There are no recommendations for a specific
sample size, as it dependents on various factors (e.g., which
technique is used, number of cases, and number of predic-
tors). Nevertheless, the sample size should be considered
when planning a study. The studies reviewed here used 74
unique study populations. The ADNI database was used
frequently: 60 (60/138, 43.5%) models were derived using
information from subsamples drawn from the ADNI data-
base. Although this overlap makes the results more compa-
rable, it renders at the same time generalizability and might
inflate accuracy. For instance, predictions for individuals in
ethnic minorities are unlikely to be accurate if models are
derived from the ADNI database, where ethnic minorities
are largely under-represented, as inferences will be based
on a low number of cases and the studies underpowered.
Furthermore, the generalizability and replication of findings
generated from populations of different sociodemographic
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characteristics (age distribution, for instance) and study
design (years of follow-up) are likely to be hampered as
left censoring will almost certainly operate differently.

4.4. Recommendations

In this review, we identified three major methodological
weaknesses, which we encourage researchers to address in
future dementia risk prediction work: (1) over-reliance on
one data source, (2) the limited evaluation of analytical as-
sumptions of the models used (Cox and logistic regression),
and (3) poor internal and external validations of the predic-
tion models. Hence, we suggest the following recommenda-
tions to improve the reliability and accuracy of dementia risk
prediction models and provide researches with some guid-
ance:

1. A broader selection of data sources should be consid-
ered when developing dementia prediction models,
including more diverse samples. Although we
acknowledge challenges for differentiation between
the dementia types, the discrimination of individuals
by dementia type will facilitate the identification of
risk factors specific to each dementia type. Data
sets with different lengths of follow-up time will
permit the evaluation of risk progression over
different time frames. We encourage researchers to
perform where possible, subgroup analyses to eval-
uate consistency of results in subgroups of similar
features.

2. When using regression analyses for dementia risk pre-
diction model development the assumptions need to
be tested thoroughly. If deviations from the (linearity)
assumptions are detected, appropriate actions need to
be taken. There are a number of more flexible
nonparametric extensions for regression analyses,
through which the linearity assumption can be
relaxed: polynomials or restricted cubic splines can
be added to the regression model or the predictor
can be (log-) transformed [21]. Similarly, the propor-
tional hazard assumption for Cox regression can be
relaxed by implementing alternative formulations of
the models (i.e., adding splines).

3. Internal and external validations are key steps during
the development and implementation of a new predic-
tion model. Internal validation provides insight to
which extent the model is overfitted and whether the
predictive ability is too optimistic, whereas external
validation proves the ability of the prediction model
to perform similarly well in a comparable population.
There are different internal validation methods, such
as splitting the data into two subsets (a development
and a validation sample), leave one-out cross-valida-
tion or bootstrapping. Bootstrapping is a recommen-
ded internal validation method, also when a large
number of predictors are used [18]. However, the

method might be limited when used in a small sample.
For external validation data with a similar but different
population to its development population are needed.
As mentioned in recommendation 1, more and easily
accessible data are required to enable fast and uncom-
plicated external validation.

4. We encourage researchers to adopt innovative meth-
odologies such as dynamic risk prediction models
[22], as the incorporation of within person change in
markers of disease progression is likely to be more
informative of risk than data collected at a single point
in time while also being more likely to reflect clinical
practice.

5. We strongly suggest the adoption of Transparent Re-
porting of a Multivariable Prediction Model for Indi-
vidual Prognosis or Diagnosis guidelines [20] when
developing and validating risk prediction models.

4.5. Strength and limitations

The strength of this review is the broad inclusion, allow-
ing a good representation of all possible methodological ap-
proaches used in the dementia risk literature. However, we
only included published articles and excluded conference
abstracts. We also included only population-based samples
or samples consisting of MCI individuals, prediction models
for other populations (e.g., individuals with Parkinson)
might have been developed with different methodological
approaches. Furthermore, only dementia was used as a
search term, whereby studies looking at specific types of de-
mentia could have been missed.

5. Conclusion

Dementia is one of the leading causes of disability and
dependence in late-life [2]. There is a great need to identify
individuals at high risk of developing dementia early on.
Therefore, the large reliance on one data source, poor vali-
dation of results, and limited verification of model assump-
tions when developing dementia risk prediction models are
of concern. It has been shown by Abrahamowicz et al. [16]
and Exalto et al. [23] that an application of a more accurate
or different analytical technique can result in altered risk
prediction. An inaccurate representation of the true rela-
tionship of a predictor variable with the outcome might
cause false identification of high-risk groups and biased
prognosis. To ensure valid conclusions and accurate risk
prediction, prognostic studies should rely on statistical
methods that correctly represent the actual structure of
empirical data and the true complexity of the biological
processes under study. Improved practice in data analysis
and innovative data designs may advance derivation of de-
mentia risk scores. Machine learning approaches are
frequently used for dementia risk prediction model devel-
opment. As machine learning approaches still need to
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improve prediction abilities, regression analyses are robust
techniques for prediction model development when applied
correctly. Compared with machine learning methods,
regression analyses are cost effective and require less
computational time.

Advanced and innovative dynamic methods already
adopted in other research and clinical areas are likely to be
the best choice for future dementia risk prediction develop-
ments for now. The community will also benefit from the
adoption of new data collection modes to advance knowl-
edge in the short term.

Acknowledgments

Funding for this study was provided by Merck Sharp and
Dohme Ltd [grant number 2726958 RB0538].

Supplementary data

Supplementary data related to this article can be found at
https://doi.org/10.1016/j.trci.2019.08.001.

RESEARCH IN CONTEXT

1. Systematic review: The authors reviewed the litera-
ture using traditional sources and references from
previous publications.

2. Interpretation: Our findings identified several meth-
odological limitations in the existing literature on de-
mentia risk prediction.

3. Future directions: Future research about dementia
risk prediction should use a more thorough method-
ological approach and devote efforts to ensure fulfil-
ment of assumptions, explore interactions, and
validation of results.
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Alzheimer’s disease (AD) has its onset many decades before dementia develops, and
work is ongoing to characterise individuals at risk of decline on the basis of early detection
through biomarker and cognitive testing as well as the presence/absence of identified
risk factors. Risk prediction models for AD based on various computational approaches,
including machine learning, are being developed with promising results. However, these
approaches have been criticised as they are unable to generalise due to over-reliance
on one data source, poor internal and external validations, and lack of understanding
of prediction models, thereby limiting the clinical utility of these prediction models. We
propose a framework that employs a transfer-learning paradigm with ensemble learning
algorithms to develop explainable personalised risk prediction models for dementia. Our
prediction models, known as source models, are initially trained and tested using a
publicly available dataset (n = 84,856, mean age = 69 years) with 14 years of follow-up
samples to predict the individual risk of developing dementia. The decision boundaries
of the best source model are further updated by using an alternative dataset from a
different and much younger population (n = 473, mean age = 52 years) to obtain an
additional prediction model known as the target model. We further apply the SHapely
Additive exPlanation (SHAP) algorithm to visualise the risk factors responsible for the
prediction at both population and individual levels. The best source model achieves a
geometric accuracy of 87%, specificity of 99%, and sensitivity of 76%. In comparison
to a baseline model, our target model achieves better performance across several
performance metrics, within an increase in geometric accuracy of 16.9%, specificity of
2.7%, and sensitivity of 19.1%, an area under the receiver operating curve (AUROC)
of 11% and a transfer learning efficacy rate of 20.6%. The strength of our approach
is the large sample size used in training the source model, transferring and applying the
“knowledge” to another dataset from a different and undiagnosed population for the early
detection and prediction of dementia risk, and the ability to visualise the interaction of the
risk factors that drive the prediction. This approach has direct clinical utility.

Keywords: early detection, risk factors, Alzheimer’s, personalised dementia risk, explainable Al model, ensemble-
based learning
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INTRODUCTION

Dementia is the consequence of a number of progressive
neurodegenerative diseases with Alzheimers disease (AD)
accounting for ~60-80% of all types of dementias (Gaugler et al.,
2019). AD is considered to be one of the top 10 causes of death,
globally. Due to the progressive nature of the disease, people with
dementia have different degrees of deterioration in cognition,
memory, mental, and other functions (Lyketsos et al., 2002).
Moreover, the socioeconomic burden of the disease is estimated
to be in the region of one trillion USD per year (World Health
Organization, 2017). Dementia has no cure; however, with early
detection and diagnosis, it may be possible to delay the onset,
which will help reduce the economic burden it currently poses
on the society (Prince et al., 2018).

A recent Lancet report has identified modifiable risk factors,
which when well-managed could reduce the risk of dementia
or delay its onset (Livingston et al, 2020). However, the
complexity of the interaction among these risk factors requires
computational approaches capable of detecting patterns from
these complex interactions to be able to achieve accurate
prediction. Meanwhile, machine-learning based approaches
have successfully been employed to help identify complex
relationships between risk factors and their effect on disease
outcomes in various application areas within the care pathway of
patients. Examples of such application areas include prediction
of pneumonia risk and 30-days readmission in hospital (Caruana
etal., 2015), a real-time prediction of patients at the risk of septic
shock (Henry et al., 2015), and application of machine learning
model in breast screening (Houssami et al., 2017).

Following the above success storeys in the non-dementia
domain, numerous attempts are being made to develop machine-
learning models for dementia risk prediction. For example,
Skolariki et al. (2021) applied machine learning algorithms to
predict the likelihood of people with mild cognitive impairment
converting to dementia based on features extracted from
brain scans. Cui et al. (2019) also applied a recurrent neural
network to develop a dementia risk prediction model based
on longitudinal features extracted from brain scans. Other
studies have also explored features obtained from sources,
such as neuropsychological assessments (Barnes et al., 2009;
Johnson et al., 2009; Lee et al., 2018; Adam et al., 2020). While
these attempts have shown promising results, the prediction
algorithms are mostly trained with samples containing diagnosis
information and therefore unable to predict beyond the critical
window of diagnosis (Prince et al., 2018), making these models
ungeneralizable to relatively younger populations (Goerdten
et al, 2019). Furthermore, despite these promising results
achieved by machine learning-based approaches for dementia,
their utility in healthcare settings remains limited partly due
to the difficultly in interpreting the outputs of these models
(Pellegrini et al.,, 2018). Interpretable models offer users the
confidence and the ability to understand why a certain prediction
was made for an individual and the specific underlining factors
that led to the prediction. Confidence in how the prediction is
made would allow the clinician to communicate this optimally to
the patient and intervene. However, lack of confidence on the part

of clinicians has resulted in the limited use of powerful machine
learning approaches, such as deep learning and ensemble-based
learning in developing prediction models for decision support
systems in the dementia care pathway. Meanwhile, the complex
nature of dementia, which results in complex data structures,
makes it imperative to continue to explore these powerful
machine learning methods, where traditional approaches, despite
their limitations in handling complex data structures (Breiman,
2001), have widely been employed (Goerdten et al., 2019).

We develop and evaluate two ensemble-based interpretable
models capable of learning patterns from the complex
interactions among risk factors to be able to predict dementia
risk at both population and individual levels up to an average
of 14 years in advance. Unlike the approaches described above,
our final model predicts individual dementia risk based on the
parent history of dementia and genetic information about the
individual. The prediction models are built using Random Forest
(RF) and XGboost algorithms. Briefly, RF like other ensembles
of classification and regression trees employs a “divide-and-
conquer” strategy in the process of learning by repeatedly
partitioning the input data into a number of large classification
trees and fitting a prediction model for each tree (Breiman et al,,
1984). It then employs the non-parametric bootstrap method
(Efron and Tibshirani, 1994) to build a prediction model for
each tree. Similarly, the XGBoost also belongs to the family of
classification and regression trees and adopts the RF approach
to learning. However, XGBoost employs a step-wise, additive
approach to sequentially build a prediction model for each tree,
while taking into account the difficulties encountered in fitting
previous models (Natekin and Knoll, 2013). It is worth noting
that RF and XGboost both combine the predictions from weak
learners to produce a final model—a process known as “voting.”
These algorithms have been demonstrated to be powerful
when applied to various problems, such as risk prediction of
hypoxaemia during general anaesthesia and surgery (Lundberg
et al., 2018).

We argue that our proposed approach provides useful and
actionable information to assist clinicians and other users in
their decision-making process around diagnosis, prognosis, and
management. We also believe that this is an important step
for machine learning in neurodegenerative disease research and
translation to clinical care. Our approach not only significantly
improves the ability for the early detection of neurodegenerative
disease but also the ability to explain the predictions from
accurate and complex models in order to understand drivers
of the prediction for important intervention strategies to
be developed.

METHODS

Overview of the Research Framework

It is believed that dementia clinically manifests after decades of
exposure to risk factors (Ritchie and Ritchie, 2012). Therefore,
the aim of this project was to develop a machine learning model
capable of predicting the risk of developing dementia decades
prior to the onset of the dementia syndrome. To achieve this,
the task was formulated as a transfer learning classification
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Transfer Learning

Source model

SHARE
Dataset

SHARE
Training
set (80%)

SHARE
Test set
(20%)

SHARE
Predictions
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1

& Model Knowledge Transfer

4

PREVENT 90%
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model decision

PREVENT
Dataset

boundary updates

PREVENT
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personalised risk prediction of dementia.

FIGURE 1 | Transfer learning process showing how data extraction and pre-processing procedures are applied to SHARE and PREVENT datasets. A prediction
model (Source model) is built using the SHARE dataset with 80% of the data used for training and 20% held-out for testing for SHARE predictions. The Source model
is updated with 90% PREVENT training and the updated prediction model (Target model) is applied to PREVENT 10% test set held-out for population as well as

problem (Pan and Yang, 2009). This made it possible to develop
the machine learning prediction model using the data drawn
from different populations and applied the model to another
population. Figure 1 illustrates the methodology employed. As
the figure shows, unlike traditional machine learning where
a model is developed and applied to predict data from the
same population, our model was developed using external
data source and transferred the knowledge learned from the
external population and applied it to data from population of
different characteristics. The characteristics of the data sources
are discussed in the next section.

Data Description and Preprocessing

The data sources used in developing the models were obtained
from the Survey of Health, Ageing, and Retirement in Europe
(SHARE) study (Borsch-Supan et al.,, 2013) and the PREVENT
Dementia programme (Ritchie and Ritchie, 2012). While both
SHARE and PREVENT projects are related to dementia research,
the rationale and aims of each of the studies vary resulting in
differences in the datasets. Table 1 shows a brief description of the
datasets. While SHARE population covers 20 European countries
with the mean age of 69 years, the PREVENT data, on the other
hand, is a relatively younger cohort with the mean age of 52
years drawn from a population limited to the United Kingdom.
Further, the SHARE cohort includes individuals with some
having been diagnosed with dementia, while the PREVENT
cohort contains healthy individuals without a diagnosis of
dementia. However, the PREVENT study participants are

children of individuals with or without a diagnosed dementia.
The study also collects information about the apolipoprotein E
(ApoE) genotype of each individual.

Even though both SHARE and PREVENT research
programmes have different research aims and objectives, there
was a high degree of overlap between the two datasets in terms
of data collection. In order to make transfer learning possible,
it was important to focus on common data items between the
two datasets. Table 2 shows the categories of common variables
found in both datasets. We extracted data records from the
SHARE dataset and merged the data of individuals across waves
1-6 which covers the period between 2004 and 2015. Therefore,
from the SHARE cohort, it was possible to build a prediction
model using a longitudinal dataset of 14 years of follow-up data.
The PREVENT dataset on the other hand is the baseline data
collected between February 2014 and October 2018.

The difference in data collection protocols used by the studies
resulted in structural differences in data. To address these
differences, we devised a pre-processing procedure to harmonise
the representation of the data items, which were employed as
features to train the learning algorithms. All medical history
variables were processed to have binary feature representation
based on the responses as either condition being present or
not present, with a feature value of “1” and “0,” respectively.
The Body Mass Index (BMI) as per WHO classification was
applied to obtain the following four categories: underweight
(<18.5 kg/mz), normal (18.5-24.9 kg/mz), overweight (25—
29.9 kg/mZ), and obese (>30 kg/mz) with feature values of
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“0, “17 “2) and “3) respectively Furthermore, “marital status”
had categorical entries (“divorced,” “married,” “living with
spouses,” “married,” “not living with spouse,” “never married,”
and “registered partnership”), and each of these was separately
represented as binary based on the response as either “yes”
or “no,” with a feature value of “1” and “0,” respectively. The
International Standard Classification of Education scheme was
applied to “education level” variable to have seven categories
with feature value representations (0 = none; 1 = first stage
of basic education; 2 = lower secondary education or second
stage of basic education; 3 = upper secondary education; 4 =
post-secondary non-tertiary education; 5 = first stage of tertiary
education; and 6 = second stage of tertiary education). The
“daily activity” variables had two categories: “vigorous” and
“moderate” sports with each having feature value representations
(0 = hardly ever or never; 1 = one to three times a month; 2
= once a week; and 3 = more than once a week). We believe
that this method of representation provides information on the
activity as well as the intensity of the activity, which can be
useful for the learning algorithms. The “smoking” variable was
also processed to have a binary representation based on the
responses with feature values (0 = never smoked and 1 = current
or past smoker). Finally, the SHARE dataset contained data
on whether a participant had been diagnosed with Alzheimer’s
disease (AD) and those without a diagnosis. This was therefore
used as the class variable for the prediction model feature values
representation (Non-AD = no diagnosis; AD = diagnosis of
Alzheimer’s dementia). However, in the absence of a diagnosis
in the PREVENT dataset, and to facilitate the evaluation of
our approach, we employed a classification scheme proposed by
Ritchie and Ritchie (2012) to group the participants according
to parental clinical status and ApoE genotype. Therefore,
participants with a parental dementia diagnosis and ApoE 4

TABLE 1 | Characteristics of SHARE and PREVENT datasets.

Data description SHARE data PREVENT data

Population
Number of samples
Mean age

Number of years of
follow-ups

Class distribution

20 European countries
84,856
69

14 years (2004-2015),
2 years interval on
average

Diagnosis

Diagnosis of
Alzheimer’s
disease—“AD" (n =
4,157)

No diagnosis
of-Alzheimer’s
disease
diagnosis—“non-AD”
(n = 80,699)

The United Kingdom
473
52

Only used baseline
data

Parental diagnosis of
AD and Apolipoprotein

E4  allele  (ApoE4)
genotype  status  of
individual

e Parental  diagnosis

of AD + ApoE4
status—"“High Risk”
(n =109)

No parental
diagnosis of AD +
No ApoE4 status of
individual —“Low
Risk” (n = 364)

genotype were allocated to a “High-Risk” (HR) group as these
individuals were considered to be at high risk of dementia. All
other participants were allocated to a “Low-Risk” (LR) group.
The final distribution of classes is as follows: SHARE dataset,
Non-AD (95%) and AD (5%); PREVENT dataset HR (23%) and
LR (77%).

Building the Prediction Model

We built four ensemble-based prediction models by training
RF and XGBoost algorithms. The algorithms were trained by
applying a hybrid approach that combines cross-validation and
hold out, through a procedure we refer to as cross-validation
with hold out (Pedregosa et al., 2011). This procedure involved
splitting the SHARE data into training and test sets. The training
set (D_train), which constituted 80% of the SHARE data, was
used to train the algorithms including hyperparameters tuning.
The 20% test set (D_eval) was held and used only for the
model performance evaluation. Similarly, the PREVENT data
was also split into 80% training set (PREV_train) and 20% test
set (PREV_eval). The splits were stratified in order to ensure the
equal proportion of class representation in both training and test
sets. A summary of our cross-validation with hold out training of
algorithms procedure is as follows:

e Step 1: We employed a 5-fold cross-validation during training,
which randomly split the 80% training set into 5-folds each
containing a subset of training (D_train;_5) and validation
(D_val;_s) sets.

e Step 2: We applied a set of initial hyperparameters to train the
algorithm to obtain five different models using D_train;_5 and
D_val;_s, to obtain a number of potential hyperparameters
from each cross-validation.

e Step 3: We then applied the random search optimization
algorithm (Bergstra and Bengio, 2012), to search and choose
from a set of potential number of hyperparameters derived

TABLE 2 | The common data items between SHARE and PREVENT datasets
used to develop the prediction models.

Data category Data items

Gender

Age

Education level
Marital status
Had children?
BMI

Heart attack

Hypertension (high blood pressure)
High cholesterol

Diabetes

Lung disease

Peptic ulcer disease

Parkinson’s disease

Emotional disorders

Osteoarthritis

Sociodemographic

Self-reported medical history

Life style Daily activity

Smoking
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from Step 2 to obtain the optimal set of hyperparameters based
on the evaluation function of the optimization algorithm.
Table 3 shows the set of initial and optimal hyperparameter
settings obtained.

e Step 4: Once the optimal hyperparameters are obtained,
we then retrained the algorithm using the optimum
hyperparameters on the entire training set, D_train.

e Step 5: We applied the procedures in Steps 2-4 for
RF and XGBoost to obtain SHARE_RF pred and
SHARE_XGBoost_pred prediction models, respectively.

e Step 6: We evaluated the performance of the prediction models
obtained in Step 5 by applying SHARE_XGBoost_pred and
SHARE_RF_pred to the hold-out test set (D_eval).

e Step 7: We employed the method proposed by DeLong et al.
(1988) to carry out a pairwise comparison of the receiver
operating curve (ROC) to compare the performance difference
between SHARE_XGBoost_pred and SHARE_RF_pred to
determine the best model.

e Step 8: We randomly spit the PREVENT data into 80%
training set (PREV_train) and 20% held out test set
(PREV _eval). Again, the split was stratified in order to ensure
an equal proportion of class representation in both the training
and test sets.

e Step 9: We employed a parameter-transfer learning approach
as described by Yao and Doretto (2010) to build a target model.
This approach assumes that the target shares parameters with
the best source model as determined in Step 7. The parameters
of the best source model are further updated using the PREV
train set. This process adjusted the decision boundaries of the
source model to produce PREVENT _target prediction model.

e Step 10: We evaluated the performance of prediction models
obtained in Step 9 by applying them to the hold-out test
set (PREV_eval).

e Step 11: We trained the XGBoost algorithm using PREV _train
and applied procedures into Steps 2-4 to obtain a prediction
model (PREVENT _only).

e Step 12: We evaluated the performances of PREVENT_target
and PREVENT _only by applying them to the hold-out test
set (PREV _eval).

e Step 13: We finally applied the procedures in Step 7 to compare
the performance difference between the PREVENT_target and
PREVENT_only to determine the best model.

Performance Evaluation

We employed a series of metrics to evaluate the performance
of the models based on the D_eval and PREV_eval unseen
datasets. As already pointed out, D_eval contained “AD”
and “No-AD” which served as the ground truth for the
evaluation of SHARE_RF_pred and SHARE_XGBoost_pred
models. PREV_eval on the other contained “HR” and “LR” as
explained above, and this served as the ground truth for the
evaluation of our PREVENT_target and PREVENT _only models.
These metrics were primarily based on the following information
obtained from the outputs of the prediction models: Refer False
Positive (FP), False Negative (FN), True Positive (TP), and True
Negative (TN) (Pollack, 1970) for details of these metrics. The

TABLE 3 | Hyperparameter settings for prediction models.

Algorithm Initial parameters Optimal hyperparameter settings
Random n_estimators = range Bootstrap = True; ccp_alpha = 0.0;
Forest (5, 40), max_features =  class_weight = None; criterion =
[auto’, 'sqrt’, ’log2’], entropy; max_depth = 24;
max_depth = range max_features = sqrt; max_leaf_nodes
(10, 25), criterion = = None; max_samples = None;
[gini, entropy] min_impurity_decrease = 0.0;
min_impurity_split = None;
min_samples_leaf = 1;
min_samples_split = 2;
min_weight_fraction_leaf = 0.0;
n_estimators = 33, n_jobs = None;
oob_score = False; random_state =
None; verbose = O; warm_start =
False
XGBoost n_estimators = range Objective = multi:softprob;

(1, 20), max_depth =
range (10, 25),
learning_rate =
[.1,.2,.4,.45,5,.55,.6],
colsample_bytree’:
[.6,.7,.8,.9, 1], booster
= gbtree,
min_child_weight =
[0.001, 0.008, 0.01]

base_score = 0.5; booster = gbtree;
colsample_bylevel = 1;
colsample_bynode = 1;
colsample_bytree = 0.7; gamma = 0;
gpu_id = —1; importance_type =
gain; interaction_constraints = None;
learning_rate = 0.5, max_delta_step
= 0; max_depth = 24;
min_child_weight = 0.003; missing =
nan; monotone_constraints = None;
n_estimators = 16; n_jobs = 0;
num_parallel_tree = 1; random_state
= 0; reg_alpha = 0; reg_lambda = 1;
scale_pos_weight = None;
subsample = 1; tree_method =
None; validate_parameters = False;
verbosity = None; num_class = 2

comparison of the models was based on geometric accuracy (GA)
as expressed in Equation (3) which is derived from Equations (1)
and (2) which represent sensitivity and specificity, respectively.
GA accounts for both majority and minority class error rates
which makes it ideal for imbalanced problems (Kim et al., 2015).

e Number of TP
Sensitivity = (1)
Number of TP + Number of FN
Numb TN
Specificity = umber of (2)

Number of TN + Number of FP

Geometric Accuracy = +/(Sensitivity x Specificity) (3)

We also employed area under the receiver operating curve
(AUROC) to further explore the robustness of our models,
given the wide usage of this metric in medical applications
(Mandrekar, 2010). Also, as already stated, a significant test
was used to examine the performance differences between the
prediction models.

Finally, we employed a method proposed by Taylor
and Stone (2009) to examine the efficacy of our transfer
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learning approach based on a learning ratio as expressed
in Equation (4).

area under curve with transfer — area under curve without transfer (

4)

ratio =

area under curve with transfer

Feature Importance and Model
Interpretability

An important advantage of tree-based algorithms is their
ability to provide information on the decisions made around
predictions. This information is provided in the form of weights
that are assigned to the features as a result of the learning process.
The value of weight assigned to a given feature is an indicator of
the importance of that feature as determined by the prediction
model, which enabled us to examine how each feature was ranked
by the prediction models.

We further applied the SHapley Additive exPlanation (SHAP)
algorithm to explore the interactions between the features
(Lundberg et al., 2018). Briefly, the algorithm is inspired by game
theory, where the interaction between features is considered as
a “team” of features, with each feature being a member of the
team responsible for driving the overall risk. An instance of the
interaction between the features registers a set of predicted values
produced by the prediction model. These values serve as input for
the SHAP algorithm to generate another set of values known as
“impact values.” The SHAP values provide a dynamic view of the
effects of the interaction between the features to determine the
probability of risk and the role of each feature on the individual
level. Furthermore, the SHAP algorithm offers the possibility to
compare an individual predicted risk probability with a baseline
prediction, which is the average predicted probability known as
the “base value.”

RESULTS

Model Performance Analyses
Figure 2 shows the confusion matrix of the results obtained
when SHARE_RF_pred (Figure 2A) and SHARE_XGBoost_pred
(Figure 2B) models were applied to 20% of SHARE unseen test
set. The figure also shows the results when PREVENT_target
(Figure 2C) and PREVENT only (Figure2D) models were
applied to 20% of PREVENT unseen test set. Table 4 further
shows a summary of the performances obtained. As seen from
the table, SHARE_XGBoost achieves a GA of 87%, specificity of
99%, sensitivity of 76%, and AUROC of 96%. In comparison,
SHARE_RF_pred achieves a GA of 85%, specificity of 99%,
sensitivity of 73%, and AUROC of 94%. Figure 3A shows
an AUROC curve comparison between SHARE_RF_pred and
SHARE_XGBoost, with SHARE_XGBoost showing a marginal
difference in the performance between the two models. A
pairwise comparison of the AUROC scores between the two
prediction models demonstrates a significant difference in
performance (P < 0.0001, 95% Confidence Interval: 0.01-0.02),
suggesting SHARE_XGBoost as the best performing model.
Again, as seen from Table4, PREVENT_target achieves a
GA of 56.5%, specificity of 84.7%, sensitivity of 38.1%, and

AUROC of 63%. In comparison, PREVENT_only achieves a GA
of 39.6%, specificity of 82.0%, sensitivity of 19%, and AUROC
of 51%. Figure 3B shows an AUROC curve comparison between
PREVENT _target and PREVENT _only, with PREVENT_target
showing a marginal difference in performance between the two
models. Even though a pairwise comparison of the AUROC
scores between PREVENT target and PREVENT only, no
significant difference in performance is observed (P = 0.2166,
95% Confidence Interval: 0.07-0.325), the PREVENT_target
model outperformed PREVENT only model across all the
performance metrics as shown in Table 4. There is an increase in
the sensitivity of 19.1%, specificity of 2.7%, GA of 16.9%, AUROC
of 11%, and a transfer-learning rate of 20.6%.

Feature Importance Analysis and
Interpretability of Personalised Risk

Prediction

Even though RF and XGboost are both considered ensemble-
based algorithms, the learning strategy tends to differ as
briefly discussed. From that score, we examine how both
models assessed the importance of the features used in training
the models. Figures4A,B depict a comparison between
SHARE_RF_pred and SHARE_XGBoost_pred prediction
models on how features were ranked based on the weights
assigned. As shown by Figures 4A,B, while significant similarities
in the ranking of the features exist between the two models,
some striking differences can also be observed. For example,
the ranking of the top seven features of both RF and XGBoost
appear to be in the same order, with *“age” being the most
important feature followed by “moderate sport, “education,”
“vigorous sports,” “BMI,” “hypertension,” and “esmoked.” Some
differences in rankings were observed. Where RF ranks “gender”
and “emotional disorders” as the 8th and 9th most important
features, XGBoost ranks “high cholesterol” and “osteoarthritis,”
respectively. Additionally, RF ranks “widowed” as the 10th most
important feature, whereas XGBoost ranks “diabetes” as the 10th
most important feature, and ranks “widowed” as one of the least
important features (ranked 18th).

Similarly, a comparison between PREVENT only and
PREVENT target shows how these prediction models ranked
the features as shown in Figures 4C,D, respectively. Again, while
there appear to be some overlaps in the order of feature rankings
between the models, some differences can also be observed.
For example, “age” remains the most important feature among
the two models. A close examination of the top 10 features of
the models show some differences in the order of rankings.
For example, while PREVENT only ranks “divorced,” and
“no_children” among the top 10, PREVENT_target also ranks
“BMI” and “gender” among the top 10, but ranks “divorced,”
and “no_children” in the 11th and 13th positions, respectively.
Even though these differences in feature rankings can be
observed between these two models, the difference is not
statistically significant. However, because our PREVENT_target
demonstrated some marginal increase in the performance over
PREVENT only, our analysis will be based on the output of
PREVENT _target model. A further comparison of the order
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FIGURE 2 | Confusion matrix showing the prediction results from unseen 20% of SHARE test data as predicted by (A) Random Forest (A,B) XGBoost models. Also
showing are the prediction results from 20% unseen PREVENT test data as predicted by (C) Updated SHARE_XGBoost_pred decision boundaries with PREVENT
training set and (D) Trained XGBoost using PREVENT training set.
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TABLE 4 | Summary of prediction models on the unseen test set.

Model Sensitivity (%) Specificity (%) Geometric AUROC (%) P-value Transfer learning
Accuracy (%) efficacy (%)

SHARE_RF_pred 73 99 94 P < 0.0001 N/A

SHARE_XGBoost_pred *76 (+3%) *99 (0%) *87 (2%) *96 (2%)

PREVENT _target **38.1 (+19.1%) *84.7 (+2.7%) **56.5 (+16.9%) 63 (+11%) P =0.2166 20.6%

PREVENT _only 19.0 82.0 39.6 51

*Performance comparison in relation to SHARE_RF_pred.
**Performance comparison in relation to PREVENT _only.

of rankings of features between SHARE_XGBoost_pred as
the source model and our PREVENT_target as the target
model also shows 70% overlap among the top 10 features
as ranked by both the models. The differences observed
include: “emotional_disorders,” “hypertension,” and “diabetes”
ranked among the top 10 by SHARE_XGBoost_pred, but
ranked by PREVENT_target model at 12th, 14th, and 21st
positions, respectively.

Furthermore, we examined the performance of the models
at individual levels. Figure 5 shows the visualisation of SHAP
values of four randomly selected prediction outputs when
SHARE_XGBoost_pred was applied to SHARE unseen test set.
Figure 5A shows an individual with AD and correctly predicted
by the model, with the probability of 80%. Figure 5B shows an
individual with AD which is incorrectly predicted as a non-
AD with the probability of 6%. Figure 5C shows an individual
without AD predicted as AD with the probability of 66%.
Figure 5D also shows an individual without AD and correctly
predicted as a Non-AD with the probability of 4%. The figures
also show the risk factors that drive each of the probabilities,
with red indicating risk factors and blue suggesting protective
factors. For example, Figure 5A shows a 69-year-old woman
correctly predicted to be living with AD with the probability
of 80%. While smoking, vigorous sports, education, BMI, and
osteoarthritis appear to be playing a role in the prediction, the
lack of moderate sports appears to be the most important risk
factors as determined by the colour (red) and the length of
the bar allocated to each risk factor. In contrast, as Figure 5B
shows, age and the fact that the person engages in moderate
sports appear to have significant impact on the prediction, which
resulted in a relatively low risk of probability of 6%. Similarly,
age and moderate sports appear to have a significant impact on
the prediction of probabilities in both Figures 5C,D. However,
while moderate sports appear to be protective for the individual
as shown in Figure 5C, the relatively older age (80 years) and
the lack of education appear to be the risk factors that have a
significant impact on the prediction resulting in the probability
of 66% of AD. In contrast, the individual shown in Figure 5D
is relatively young and engages in moderate as well as vigorous
sports, which appear to be the proactive factors driving the
prediction with a relatively low probability of 4% risk of AD.

Examining our target model at the individual level, Figure 6
shows randomly selected outputs when PREVENT _target model
was applied to PREVENT unseen test set. Figure 6A shows a
low-risk individual predicted as a high-risk with the probability

of 70%. Figure 6B shows a high-risk individual correctly
predicted with the probability of 7%. Figure 6C shows a high-
risk individual predicted as low-risk with the probability of 19%.
Figure 6D is also a low-risk individual correctly predicted as
low-risk with the probability of 27%. As the figures show, while
age appears to be the most protective factor for all the individuals,
the lack of vigorous sports, relatively low education, and BMI
appear to be the risk factors with the greatest impact. A closer
look at Figure 6A shows a 60-year-old individual who has no
education and lacks physical activity and therefore predicted
by the model to be at high risk despite having been allocated
to the low-risk group. Similarly, Figure 6B shows a 52-year-
old individual belonging to the high-risk group and correctly
predicted by the model with a probability of 63%. In this figure,
individual age is the most protective factor, while education (3 =
upper secondary level) and having a healthy weight (BMI = 1)
appear to be risk factors. This may suggest that higher education
may be critical for individuals with an APOE e4 gene and a
parental history of dementia, compared to individuals without
that fall outside the high-risk group.

DISCUSSION

This study developed an ensemble-based machine-learning
model to predict Alzheimer’s dementia risk at both population
and individual levels based on the data drawn from two
populations with different characteristics. Our models were built
using large heterogeneous data drawn from a population of
20 European countries with up to 14 years of follow-up data.
Our best model achieves high-performance accuracy, obtaining
an AUROC score of 96% on the unseen test set. The decision
boundaries of the best model were further updated through
transfer learning. The update was done using data from a
different population with different dementia risk profiles to
produce a target model. The target model achieves an AUROC
score of 63% and a transfer learning efficacy rate of 20%. It
is also able to visualise the risk as well as protective factors
that are responsible for the prediction at both population and
individual levels.

To the best of our knowledge, this is the first approach that
employs transfer learning with ensembles to develop dementia
risk prediction models and visualisation of risk factors from
an undiagnosed population in mid-life. Although numerous
computational approaches have been developed, these methods
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and XGBoost trained with PREVENT only (PREVENT only model) and applied
to 20% PREVENT unseen test set.

have been limited in terms of sample size and the over-reliance on
a homogenous sample for validation (Goerdten et al., 2019). van
Maurik et al. (2019) attempted to address this issue by combining
data from older adults in different populations across Europe
and North America to develop dementia-risk prediction models
for people with mild cognitive impairment. They employed
traditional statistical modelling approaches and biomarkers, such
as cerebrospinal fluid and imaging data to develop the prediction
models. While we are unable to compare our proposed approach
to that of van Maurik et al. (2019) due to differences in data used,

it would be interesting to compare the performance of the two
modelling approaches on the same dataset in the future.

Even though the relative differences in feature rankings
between the models may be hard to interpret relative to their
importance in predicting the dementia risk, and given that
XGBoost outperforms RF as our significant test suggests, it
would be reasonable to conclude that the feature rankings of
XGBoost model could be more accurate and therefore reliable.
The prediction models developed here identified risk factors that
agree with previous literature. We demonstrate this by examining
the top 10 features as ranked by the XGboost prediction models.
Numerous studies have concluded that age remains the single
biggest risk factor (Song et al.,, 2014). This is consistent with
our model, ranking age to be the most important risk factor.
Even though age is considered a non-modifiable risk factor, the
Lancet commission report on dementia prevention by Livingston
et al. (2020) identified a number of risk factors which when
modified could reduce the risk of dementia by 40%. The report
identified less education, hypertension, hearing impairment,
smoking, obesity, depression, physical inactivity, diabetes, and
infrequent social contact as potentially modifiable risk factors.
Seventy percent of these risk factors were ranked among the top
10 by the study’s prediction model as shown in Figure 4.

Furthermore, the interaction effects identified by the study’s
models are also in accordance with the existing evidence. For
example, low education level is known to account for up
to 8% and physical inactivity accounts for up to 3% of the
dementia risk (Livingston et al., 2017). Again, both education
and physical activity are associated with cognitive reserves and
improvement in mental functions, suggesting that these could act
as protective factors (Sharp and Gatz, 2011). Therefore, poorly
educated individuals with a sedentary lifestyle could have an
increased risk of dementia. This phenomenon is consistent with
what is observed in Figures 5, 6. As Figure 5A demonstrates,
the relatively low education and low levels of physical activity
(moderate/vigorous sports) were the two major risk factors
among the (non-age) other risk factors that increased the risk of
dementia up 80% of this individual. This is consistent with what
is observed in Figure 6A which shows an individual considered
to be at low risk but due to lack of education and physical
activity, the risk profile of this individual is predicted with 70%
probability, with age being the only protective factor.

While the majority of the top 10 risk factors ranked by
the study’s prediction model were part of those identified by
the recent Lancet Commission report, there are a few that
appear to be playing a major role in the risk prediction but not
currently part of the report. Figure 6B demonstrates the effect
of emotional disorder on the risk of dementia at the individual
level. Again, while age and physical activity remain significant
protective factors, emotional disorder appears to be playing a
significant role in the 7% risk of Alzheimer’s Dementia for this
individual. Therefore, any intervention in the emotional health
of this participant chosen for illustrative purposes could further
reduce their risk. This approach is exactly what is envisaged in
the Brain Health Clinics being developed across Europe (Frisoni
et al., 2020) based on a consensus led by our group in how to
change clinical services for dementia prevention (Ritchie et al.,
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FIGURE 5 | Force plot showing the effect of SHAP values on the interaction of features and the overall prediction at the individual level. This shows examples of
prediction outputs with taken from SHARE as predicted by the SHARE model. Features in red show risk factors pushing up the overall probability while those in blue
are protective factors pushing down the probability. (A) Shows SHARE participants predicted to have AD with 85% probability. (B) Shows SHARE participant
diagnosed to have AD but has been predicted by the model to be Non-AD with 6% probability. (C) Shows a Non-AD participant predicted as AD with 63% probability.
(D) Shows as Non-AD participant predicted as Non-AD with 4% probability. Feature labels are: esmoked (0 = never smoked); emotional disorders (0 = no);
hypertension (0 = no); osteroarthritis (1 = yes); high cholesterol (O = no); heart attack (O = no); education (2 = lower secondary education or second stage of
basic education; 3 = upper secondary education); moderate sports (O = hardly ever, or never, 1 = one to three times a month); vigorous sports (0 = hardly ever, or
never, 1 = one to three times a month); no children (O = no children); widowed (1 = yes); BMI [1 = under weight (<18.5)]; married, living with spouse (0 = no)
and gender (1 = male).

2017). This is based on collecting data from these Brain Health  population and individual levels. Secondly, further validation
Clinics to support Real World machine learning approaches  of the model using data from non-research settings is crucial.
and using these algorithms to support the development of  The dataset used in training the model is obtained from
personalised prevention plans driven by early disease detection  research settings, which is considered to be of high quality
and comprehensive risk profiling. due to the strict data collection protocols that are used in

Even though the performance of the study’s prediction model  these settings. Thirdly, the problem of imbalanced data and
demonstrates a potential clinical utility, we do acknowledge the ability to develop accurate prediction models that account
that it would benefit from further development and validation. ~ for these problems are major challenges (Khalilia et al., 2011).
Firstly, it would be beneficial to evaluate the effect of additional =~ However, RF and XGBoost have consistently been shown to
data sources derived from biological samples and neuroimaging  have the capacity to handle imbalanced challenges due to the
on the overall performance of the studys model as well as  strategy employed in learning. For example, Facal et al. (2019)
the effect of the interactions of additional features at both  compared the performance of number learning algorithms,
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FIGURE 6 | Force plot showing the effect of SHAP values on the interaction of features and the overall prediction at the individual level. This shows examples of
prediction outputs PREVENT target models. Features in red show risk factors pushing up the overall probability while those in blue are protective factors pushing
down the probability. (A) Shows PREVENT participant assigned to the Low-risk group but has been predicted by the model to be High-risk with 70% probability. (B)
Shows a High-risk participant predicted as High-risk with 63% probability. (C) Shows a High-risk participant predicted as Low-risk with 19% probability. (D) Shows
Low-risk participant predicted as Low-risk with 27% probability. Feature labels are: esmoked (0 = never smoked); emotional disorders (0 = no); hypertension (0
= no); osteroarthritis (1 = yes); high cholesterol (0 = no); heart attack (0 = no); education (2 = lower secondary education or second stage of basic education;
3 = upper secondary education); moderate sports (O = hardly ever, or never, 1 = one to three times a month); vigorous sports (0 = hardly ever, or never, 1 = one
to three times a month); no children (0 = no children); widowed (1 = yes); BMI [1 = under weight (<18.5)]; married, living with spouse (0 = no) and gender (1 =
male).

including RF and XGBoost, to predict mild cognitive impairment
to dementia conversion with highly skewed class distribution,
and XGBoost demonstrated superior performance over the rest
of the algorithms and outperforming RE which is consistent
with the study’s findings. Nevertheless, the study’s model may
benefit from incorporating some of the numerous imbalanced
data techniques discussed by Fernandez et al. (2018) in the
processing pipeline as part of future work. Lastly, all missing
data were removed from the training set as part of the pre-
processing step, which may have led to loss of data. This
approach is not ideal and sub-optimal particularly when dealing

with longitudinal datasets with long follow-up periods as well
as real-world datasets, which mostly have a high prevalence
of missing data. Therefore, approaches to handling missing
data such as those described by Buck (1960) could potentially
be explored.

Even though the study’s source model achieved a relatively
good performance, the performance of our target model could
be better. The 63% AUROC score and a transfer learning efficacy
rate of 20% achieved by the study’s target model could be
attributed to the limited sample used to update the decision
boundaries of the study’s source model. This could be considered
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a limitation, and therefore a bigger sample size will be required to
further update and evaluate the model.

CONCLUSION

Drawing on the transfer learning paradigm of artificial
intelligence, we developed ensemble-based models capable of
predicting Alzheimer’s dementia onset in a relatively younger
population up to 14 years in advance of the mean in the training
set with promising results. The models not only predict dementia
risk but also provide a visualisation of the interactions between
risk factors to determine those driving the risk prediction at
the individual level. The complex nature of dementia requires
powerful machine learning models to be able to learn complex
patterns from the interactions between risk factors, and the
study’s proposed model achieves this with reasonable accuracy.
While some of the risk factors identified are well-documented,
our model further identified less suspected risk factors that
appear to be significant in driving the risk of AD. We believe that
with further development and validation, our prediction model
has the potential to support the early detection for appropriate
interventions to be developed to prevent dementia.
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1 | INTRODUCTION

Isabelle Carriére? |

Graciela Muniz-Terrera?

Abstract

Introduction: The frequently used Cox regression applies two critical assumptions,
which might not hold for all predictors. In this study, the results from a Cox regression
model (CM) and a generalized Cox regression model (GCM) are compared.

Methods: Data are from the Survey of Health, Ageing and Retirement in Europe
(SHARE), which includes approximately 140,000 individuals aged 50 or older followed
over seven waves. CMs and GCMs are used to estimate dementia risk. The results are
internally and externally validated.

Results: None of the predictors included in the analyses fulfilled the assumptions of
Cox regression. Both models predict dementia moderately well (10-year risk: 0.737;
95% confidence interval [CI]: 0.699, 0.773; CM and 0.746; 95% Cl: 0.710, 0.785;
GCM).

Discussion: The GCM performs significantly better than the CM when comparing
pseudo-R? and the log-likelihood. GCMs enable researcher to test the assumptions
used by Cox regression independently and relax these assumptions if necessary.

KEYWORDS
Cox proportional hazards regression, dementia risk model, dementia, prediction, splines

Multiple dementia risk prediction models have been developed in

the last decade.>” However, only a few have been recommended for

Dementia is one of the leading causes of dependency and disability in
older individuals, with no cure yet.22 However, evidence from recent
studies shows the protective effects of lifestyle changes (eg, healthy
diet and physical activity), regardless of genetic risk, have opened
opportunities for dementia risk reduction via the implementation of
behavioral interventions.®* Hence, the identification of individuals at
high risk of developing dementia is pivotal to apply preventive pro-

grams and to inform selection into clinical trials.

clinical use, largely due to their multiple methodological weaknesses.
For instance, some of the methodological limitations of the models
reviewed include the overreliance on one data source and lack of inter-
nal and external validation; important concerns about the analytical
techniques used were also highlighted.®®? The review of Goerdten
et al.” summarizes the analytical techniques commonly used to derive
dementia risk prediction models. Cox proportional hazards regression
was one of these frequently used techniques. It belongs to the class of

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any
medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.
© 2020 The Authors. Alzheimer’s & Dementia: Translational Research & Clinical Interventions published by Wiley Periodicals, Inc. on behalf of Alzheimer’s Association.
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survival models, where the time until the event of interest, for exam-
ple, death or disease diagnosis, is analyzed. With Cox regression, the
influence of multiple predictors on the hazard, that is, risk of death
or the disease, can be modeled. But this model relies on two critical
assumptions: the proportional hazards (PH) and the log-linearity (LL)
of covariates. The PH assumption supposes that the ratio of hazards
between two individuals remains constant over the studied period.
However, in dementia studies in which the effects of risk factors are
observed over two or three decades certain individual factors may be
of benefit at a time and disadvantage at another time. For instance,
in a recent study Ritchie et al.1% showed that high plasma beta amy-
loids were associated with an increased risk in the preclinical phase
only and tended to flatten out in the approach to diagnosis while per-
formances of cognitive tests were lowered across the 10 years before
diagnosis.

Published Cox regression analyses typically impose a priori the
assumption that continuous covariates have a linear effect on the
logarithm of the hazard. This LL assumption implies that dementia
risk changes gradually with increasing value of the prognostic factor,
so that, for example, the relative risk for a 60-year-old subject com-
pared to a 50-year-old is the same as that when comparing subjects
aged 80 versus 70 years. However, if the true relationship between
the continuous independent variable and the outcome does not
fulfil the LL assumption, then the conventional log-linear model may
result in incorrect identification of high-risk subgroups and biased
prognosis.

In this article, we use generalized Cox regression models,
which can incorporate non-linear and/or time-dependent effects
of variables to model dementia risk.!* To demonstrate the ben-
efits of this modeling approach for dementia risk prediction,
we compare results obtained from this methodology to results
obtained from Cox regression, which is used frequently in the
field.?

2 | METHODS

2.1 | Study population

The Survey of Health, Ageing and Retirement in Europe (SHARE) is
a multidisciplinary and cross-national panel database with data col-
lected on health, socio-economic status, and social and family net-
works. SHARE comprises approximately 140,000 participants aged
50 and older from 27 European countries and Israel. Follow-up of
respondents was carried out in waves (Wave 1 to 7). SHARE was
described elsewhere in more detail.'2 We use information from
Wave 2 to 7,118 as from Wave 2 forward the information regard-
ing dementia diagnosis was collected from respondents aged 60 and
older. Wave 3 was not included, as it focused on the childhood of
respondents.* In SHARE participants with only baseline measures, a
dementia diagnosis at baseline and/or missing information for the pre-
dictor variables were excluded, which resulted in a cohort of 11,603

participants.

HIGHLIGHTS

* The frequently used Cox regression employs two crucial
assumptions, which might not hold for all predictor vari-
ables, and can lead to incorrect predictions of dementia
risk.

* Generalized Cox regression can relax the assumptions
made by Cox regression.

* Generalized Cox regression performs better than Cox
regression in predicting dementia risk.

* Generalized Cox regression is an interesting extension of
Cox regression, and should be used more frequently in

dementiarisk research.

RESEARCH IN CONTEXT

1. Systematic review: The authors reviewed the literature
using traditional sources (PubMed) and references from
previous publications.

2. Interpretation: The presented findings show the improve-
ments made through the incorporation of splines in the
model, and the relaxation of the assumptions used by Cox
regression. Importantly, none of the continuous predictor
variables obeyed the crucial PH assumption. Generalized
Cox regression enables researchers to test the assump-
tions independently and relax the assumptions of Cox
regression if necessary.

3. Future directions: We would like to encourage

researchers to adapt the use of splines in dementia

risk prediction research.

2.2 | External validation sample

The Aging, Demographics, and Memory Study (ADAMS) is a supple-
mentary study of the Health and Retirement Study (HRS).2? The HRS
is a longitudinal panel study, looking into the changing health and
economic circumstances of adults over age 50 in the United States.
In ADAMS, in-person clinical assessments were conducted to gather
information on the cognitive status of the participants over four waves
(Wave Ato D). Participants are aged 70 and older. The design and meth-
ods of ADAMS are described elsewhere in more detail.?°

2.3 | Assessment of dementia and predictors

Dementia diagnosis was recorded by self-report in SHARE. The partic-
ipants were asked if a doctor ever diagnosed them/told them they have

Alzheimer’s disease, dementia, or senility.21-2>
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To have a close and in-depth look at the variables selected as pre-
dictors, we chose to focus on modifiable risk factors identified by Liv-
ingston et al.Z and age. We selected age, years of education, body mass
index (BMI), hearing loss, high blood pressure, smoking status, depres-
sion, physical activity, and diabetes. The information regarding disease
status and behavioral risk were collected by self-report.2! BMI was cal-
culated from height and weight reported by the participants. Hearing

» o« » o« » o«

was recorded as “excellent,” “very good,” “good,” “fair,” and “poor.” It
was categorized into 0/1, where “excellent” to “good” was coded as O
and “fair” to “poor” as 1. For the diagnoses of high blood pressure and
diabetes the participants were asked if a doctor ever told them they
have high blood pressure/hypertension or high glucose level/diabetes.
For the diagnosis of depression, the participants were asked if they suf-
fered ever/since last wave from symptoms of depression which lasted

at least 2 weeks. Physical activity was recorded as “more than once a

»u »a

week,” “once a week,” “one to three times a month,” and “hardly ever, or
never.” It was categorized into 0/1, where “more than once a week” to
“one to three times a month” was coded as 0 and “hardly ever, or never”

as 1.

2.4 | Generalized Cox regression

Cox proportional hazard regression is commonly used to model cen-
sored survival data. The purpose of the Cox proportional hazards
regression model (CM) is to model the simultaneous effect of multiple
factors on the survival.2é The CM aims to estimate hazard ratios over

time.2¢ The model equation is written as follows:
h(tlzq, ...,zp) = ho (t) exp (Z ﬁ,-zi)
i

where (z); = 1., arethe values of the covariates Z, ..., Z, on which the
hazard may depend and hq(t) represents the baseline hazard. The base-
line hazard is defined as the value of the hazard when z; = O,foriin 1, p.

In this study, three flexible models proposed by Mahboubi et al.2”
were used, which are generalizations of the CM. With these flexi-
ble models, one or both assumptions used by Cox regression can be
relaxed and tested independently. Cox regression employs the PH and
LL assumption. With the generalized Cox regression model (GCM) it
is possible to model time dependent hazard ratios and/ or non-linear
effects of the predictor variables.

The first flexible model relaxes the proportional hazards assumption
(NPH):

hltlzy, ...2)) = ho(t) exp (Zﬁ,- (t)z,-)

The second flexible model relaxes the log-linearity assumption
(NLL):

hitlzs, ....2) = ho (t) exp (Z r (z;))

Clinical Interventions

Test of PH assumption Test of LL assumption

Global test

Test of LL without

A Test of PH without
PH assumption

NPHNLL LL assumption

model

FIGURE 1 Testing of assumptions and finding best model. Arrows
represent likelihood ratio test. Comparing models by likelihood ratio
tests the assumptions of proportional hazards (PH) and log-linearity
(LL), and the best fitting model for the predictor is identified. This
figure is adapted from Mahboubi et al?’

Last, the third flexible model relaxes both assumptions simultane-
ously (NPHNLL):

h(tlz1, ..., 2,) = ho (t) exp (Z Bi(t)r; (Zi)>

The function r; is a spline function of z; modeling the non log-linear
effect of z; and Bi(t) is a spline function of t modeling the time depen-
dent effect of z;. Estimations of these functions are based on the full
likelihood.

The flexible models use B-splines, which are piecewise polynomials,
where the pieces are joint by knots. Here, the splines are allowed to
have one or two knots. The knot selection has to follow one criterion:
there must be roughly the same number of events in the subintervals
defined by the selected knots. The decision if one or two knots are used
is based on a goodness of fit test. For example, models with one and two
knots are computed and compared in terms of the Akaike information
criterion (AIC). The model that produces the smallest AIC is selected.
It can be tested if a variable obeys the assumptions by comparing the
models described before using likelihood ratio tests (see Figure 1)27
and by this deciding which of the four models (CM, NPH, NLL, NPHNLL)
models the variable best.

2.5 | Statistical analyses

A CM and a GCM were fitted to data from SHARE to predict dementia
risk. Study time was used as time scale for all analyses. Study time was
calculated from study entry (Wave 2, 2007) until study exit—wave of
dementia diagnosis, wave in which participant died, wave in which par-
ticipant was lost to follow-up, or the end of the study (Wave 7, 2017),
whichever came first. In the survival time analyses, dementia diagnosis
was treated as the failure event.
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To compute the full GCM, first, we tested if each predictor variable
complied with the PH assumption and/or the LL assumption. To test
these assumptions each predictor variable was modeled in a CM, an
NPH model, an NLL model, and in an NPHNLL model. The computed
models were compared by likelihood ratio test, and the best fitting
model for each predictor variable was selected. All predictor variables
were entered into the full model, while modeling each predictor with
the best-identified knot and spline combination. Last, after fitting the
model with all identified splines and knots, spline coefficients were
eliminated systematically. We reduced spline coefficients if more than
one coefficient was non-significant for a predictor, while comparing
the smaller model with the previous one by likelihood ratio test—until
the best fitting model was found. For the full CM, all predictor vari-
ables were entered into the model. To determine which model fits the
data better, the model derived from Cox regression or generalized
Cox regression, likelihood ratio tests were performed and the com-
puted pseudo-R? proposed by Nagelkerke and Cragg and Uhler were
compared.?¢ C-statistics adapted for survival analyses were calculated
to assess predictive ability.2® The C-statistic is a discrimination mea-
sure for binary outcomes, and it ranges from below 0.5 (indicating very
poor model discrimination) to 1 (indicating perfect model discrimina-
tion). Bootstrapping with 1000 repetitions was performed to compute
95% confidence intervals (Cl) for the C-statistics and the pseudo-R2.

SHARE was used as the development sample and ADAMS as the
external validation sample.

All analyses were performed in R Studio (Version 3.5.1)28 and the

29

packages flexrsurv,2? survival,®%31 Hmisc,32 and ggplot233 were used.

3 | RESULTS

Among the 11,603 SHARE participants, 757 (6.5%) reported that they
had received a diagnosis of dementia during 10 years of follow-up.
The mean age of diagnosis was 75.4 (7.2 standard deviation [SD]).
Baseline characteristics for SHARE and ADAMS are presented in
Table 1.

In SHARE none of the variables obeyed the PH assumption, when
modeled alone (crude model). Two (years of education and BMI) of
three continuous variables additionally did not obey the LL assump-
tion. Comparisons of the estimated log hazards of dementia risk for
age, years of education, and BMI in SHARE from the crude CMs (Fig-
ure 2 parts A, C, E) and GCMs(Figure 2 parts B, D, F) are presented in
Figure 2.

The following section discusses the full prediction model derived
from Cox regression and generalized Cox regression; both include the
same predictor variables (age, years of education, BMI, depression, dia-
betes, high blood pressure, hearing, smoking status, and physical activ-
ity). In the full GCM, age, years of education, and BMI were modeled
non-proportional with time (NPH). When comparing the CM and GCM
in terms of the log-likelihood, the test results in a P-value of <.001.
The pseudo-R? for the CM is 0.06 (95% Cl: 0.048, 0.062) and for
the GCM 0.493 (95% ClI: 0.460, 0.506). The C-statistic for the pre-
dicted 10-year dementia risk is 0.737 (95% Cl: 0.699, 0.773; CM) and

TABLE 1 Baseline characteristics of SHARE and ADAMS

SHARE ADAMS
N=11,603 N =410
Dementia (%) 757 (6.5) 102 (24.9)
Age mean (SD") 69.7(7.2) 79.1(6.1)
Years of education (SD) 10.2 (4.4) 10.71 (4.3)
Body mass index (SD) 26.7 (4.2) 26.9 (4.9)
Sex (%)
Female 6283 (54.1) 210(51.2)
Male 5320 (45.9) 200 (48.8)
Depression (%) 1866 (16.1) 107 (26.1)
Diabetes (%) 1354(11.7) 86(20.98)
High blood pressure (%) 4647 (40.1) 257 (62.7)
Poor hearing (%) 2464 (21.2) 122(29.8)
Ever smoker (%) 1532(13.2) 117 (28.5)
No physical activity (%) 5424 (46.8) 257 (62.7)

aStandard deviation (SD).
Abbreviations: ADAMS, Aging, Demographics, and Memory Study; SHARE,
Survey of Health, Ageing and Retirement in Europe.

0.746 (95% Cl: 0.710, 0.785; GCM). The C-statistic for the predicted
4-year dementia risk is 0.711 (95% Cl: 0.678, 0.74; CM) and 0.709
(95% ClI: 0.673, 0.74; GCM). Within ADAMS the two models gener-
ate a C-statistic for the predicted 6-year dementia risk of 0.743 (95%
Cl: 0.58, 0.924; CM) and 0.764 (95% Cl: 0.607, 0.952; GCM). All com-
puted C-statistics for the time points from the models are presented in
Table 2.

The regression coefficients computed by CM and GCM from SHARE
are presented in Appendix A in supporting information. The computed
overall C-statistics for the CM and GCM in SHARE and ADAMS are pre-

sented in Appendix B in supporting information.

4 | DISCUSSION

In this study, we compared dementia risk prediction models derived
from generalized Cox regression and Cox regression. Our results show
that the model derived from the generalized Cox regression fits the
data significantly better than the model derived from Cox regression.
The predictive ability of the CM and GCM range from moderate to

good.
4.1 | Cox regression versus generalized Cox
regression

The GCM performs in the development sample and in the validation
sample better than the CM. Both GCM and CM reach moderate to good
predictive ability, whichisin line with previous dementiarisk prediction

models.”
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FIGURE 2 Estimated log-hazards from crude Cox models (CMs) and generalized Cox models. Graphs A, C, and E show estimated log-hazards
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TABLE 2 C-statistics for SHARE models

Number of regressionC-statistic
cases

In SHARE
10 years 177
8years 173

Cox

(95% Cl)

0.737(0.699,0.773)
0.658(0.616,0.699)

Generalized Cox
regressionC-statistic
(95% Cl)

0.746 (0.710,0.785)
0.659(0.616,0.698)

6 years 150 0.735(0.693,0.773)  0.736(0.695,0.775)
4 years 257 0.711(0.678,0.74) 0.709(0.673,0.74)
In ADAMS

>6years 13 0.747(0.601,0.917)  0.805(0.695,0.942)
6 years 10 0.743(0.58,0.924) 0.764(0.607,0.952)
5years 23 0.51(0.367,0.652) 0.517(0.368,0.659)
4 years 23 0.592(0.436,0.768)  0.589(0.430,0.775)
3years 4 1.0 1.0

2 years 16 0.708 (0.558,0.869)  0.708 (0.555, 0.865)
1years 23 0.602(0.45,0.765) 0.62(0.468,0.795)

Abbreviations: ADAMS, Aging, Demographics, and Memory Study; Cl, confi-
dence interval; SHARE, Survey of Health, Ageing and Retirement in Europe.

The overall estimated C statistic for SHARE and ADAMS from
the GCM shows an interesting problem: the C-statistic is lower than
0.5, which would mean the model performs worse than chance (see
Appendix B). However, this is not the case when looking at the esti-
mated C-statistics for the follow-up time points. The C-statistic is a
rank correlation test; a high C-statistic translates to a model which is
able to estimate higher risks for individuals experiencing the outcome
than individuals who did not during follow-up.2¢ In this case—in which
we relaxed the PH assumption for all three continuous predictors—the
C-statistic test is not able to rank the estimated risks correctly, because
the GCM estimates time dependent risks. The overall risk of individu-
als who had a follow-up of 10 years is higher than for example of indi-
viduals who had a follow-up of 4 years, regardless of dementia risk
(Appendix C in supporting information). Hence, the test ranks all indi-
viduals who had a follow-up of 10 years over individuals with a follow-
up of 4 years, which results in an incorrect low C-statistic. It might be
useful to evaluate in which time frame a dementia risk prediction model
derived from a GCM performs best.

Additionally, it needs to be mentioned that the C-statistic or area
under the receiver operating characteristic curve (AUROC) is not rec-
ommended to compare models, as it is a low power procedure.®* They
should only be used to describe the predictive ability of a model.
Instead, a high-power test should be carried out to asses which model
fits the data better, for example, a likelihood ratio test and/or compar-
ing R2. In this study the likelihood ratio test suggests the GCM fits the
data significantly better than the CM. The pseudo R? suggests that the
GCM improves greater upon the null model than the CM and hence is
better able to predict the outcome than the CM. When looking at the
results from the likelihood ratio test and the pseudo R? we can con-
clude that the GCM performs better than the CM in modeling dementia
risk in SHARE.

4.2 | Improvements by generalization

As summarized by Goerdten et al.,” most published dementia risk
prediction studies overlook the fulfilment of the assumptions of the
analytical technique used for the estimation of risk. Consistent testing
of these assumptions is crucial, as their violation can lead to biased
results.®®> This is especially important for continuous variables (eg,
age) as shown in our work. This problem might lead researchers
to categorize continuous variables, a practice that in turn leads to
information loss and residual confounding.3¢ Instead, Moons et al.3”
recommend the incorporation of splines, if there are any uncertainties
about whether a variable complies with the linearity assumption, as
the incorporation of splines makes the categorization of continuous
variables unnecessary.

Inthis study we incorporated splines to test and relax the two strong
assumptions used by Cox regression: (1) assumption of LL, that is,
a linear relationship between the independent variable and the log-
hazard of dementia and (2) assumption of PH, that is, the effect of
a variable is constant over time. There are other (simpler) options
to assess the PH assumption of Cox regression: an interaction term
with time can be added to the model or stratification by time can
be performed. But using simpler testing methods implies assuming
the LL assumption while testing the PH assumption and assuming the
PH assumption while testing the LL assumption. The GCM allows us
to test both assumptions of Cox regression independently from each
other.

None of the predictor variables included in our analyses fulfilled the
PH assumption. Furthermore, two of the continuous variables did not
fulfil the LL assumption either. Comparing the estimated log-hazards
for the three continuous variables (age, BMI, and years of educa-
tion) from crude CMs and GCMs, the difference between the models
becomes evident. While the CM computes linear declining or increas-
ing log-hazards for the continuous variables, GCM computes a great
variety of curves (see Figure 2). For age the PH assumption was relaxed,
hence the effect of this variable on dementia risk is not constant with
time and the different lines for 4 to 10 years can be seen. For BMI and
years of education additionally the LL assumption was relaxed, hence
the effects of the variables are not constant with time and there are
non-linear relationships between the variables and the log-hazard of
dementia, and the different lines with curves for 4 to 10 years can be
seen.

Comparing the presented methodology with for example the CAIDE

score3®

—a well-known dementia risk prediction score, computed by
logistic regression, that ignores the dependence on time of the event
being modeled—the applied approach could in theory model more
accurately dementia risk. The CAIDE score translates to risk percent-
ages ranging from 1% (low risk) to 16.4% (high risk). The difference to a
risk model derived from GCM would be that the prediction model could
inform if this risk changes over time, as the effects of some or all predic-
tors ondementia risk change with time. The generalized Cox regression
is more flexible and able to pick up changes in the effect of a predictor

variable on dementia risk over time.
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4.3 | Strengths and limitations

This study has several limitations. First, due to the design of the used
datasets, interval censoring is present. This means that the exact date
of diagnosis is not known and occurred at some point during the inter-
val between the waves. This might have resulted in biased results, likely
an overestimation of the predictor coefficients.?? Second, censoring
due to death, which is a competing event, was not taken into account.
There are existing methods to incorporate competing risks in survival
analyses*© as well as generalizations of these models.*! However, the
information on death in SHARE are recorded by proxy questionnaire
and the use of these information might have hampered the results even
further.2! Third, the quality of the data about dementia diagnosis in
SHARE is not optimal, as it is only recorded by self-report and no fur-
ther testing of the diagnosis is made. A similar limitation of the data is
that the predictor variables were also self-reported. However, for the
purpose of this paper, these limitations are not critical given the aims
of our work.

This study has several strengths. SHARE offers a large sample size,
which covers a wide range of European countries and Israel, making it
representative of the European population.'? In ADAMS the diagnosis
of dementia was made by professionals. Every predictor variable was
tested for the assumptions used by Cox regression. Importantly, fol-
lowing recommended practice, the developed models were validated

internally and externally.

5 | CONCLUSION

With the generalized Cox regression, the assumptions of Cox regres-
sion can be tested thoroughly and independently, and relaxed if
needed. However, while the generalized Cox regression offers advan-
tages, such as avoiding categorization, the disadvantages need to be
mentioned too: the flexible models can require long computation times
and a bigger sample is needed than for a Cox regression. Addition-
ally, the interpretation of the coefficients computed by GCMs are not
straightforward and it is only possible to examine the effect of a vari-
able visually. Taking all this into account the generalized Cox regression
is an interesting option to extend a Cox regression. The possibility to
add splines and herewith relax the assumptions is especially appeal-
ing when including continuous variables. We would like to encour-
age researchers to adapt the use of splines in dementia research, to
increase the understanding of the relationship between potential pre-

dictors and dementia risk.
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