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3 Abstract

Background and Significance

As various approved COVID-19 vaccines are rolled out globally, safety signals have been
identified from spontaneous reports and other data sources. The current standard method
of safety surveillance adopted by the FDA is MaxSPRT, which suffers from the inflex-
ibility of a pre-specified sequential analysis schedule. We hope to develop and imple-
ment a more flexible Bayesian surveillance framework and compare its performance with
MaxSPRT in real-world data.

Study Aims

To compare the real-data performance (testing errors, timeliness, precision and bias) of
Bayesian and frequentist sequential analysis methods for the study of comparative vaccine
safety.

We will also produce a reference table of Type | and Il error rates and signal detection
times for all combinations of design and threshold choices, as exploration of the operating
characteristics of Bayesian sequential methods.

Study Description
* Design: historical comparator & self-controlled studies

» Exposures: previous viral vaccines including 2017-2018 flu, HIN1pdm flu, Human
Papillomavirus (HPV), and Varicella-Zoster.

» Outcomes: selected adverse events of special interest (e.g., Guillain-Barre Syn-
drome); negative control outcomes; imputed positive control outcomes

* Analyses:

1) historical comparator/historical rates (frequentist)

2) historical comparator/historical rates (Bayesian)

3) Self-controlled case series with variations (frequentist)
4) Self-controlled case series with variations (Bayesian)

» Decision rules:

— Frequentist method: reject null at @ = 0.05 level, using the MaxSPRT adjust-
ment
— Bayesian method:
« Posterior probability of signal, P, = P(H/ true, signal | data); reject null
(claim signal) when P; > 4, with 6; = 0.80, 0.90, 0.95;
« Posterior probability of futility, P, = P(H, true, safety | data); accept
null (claim safety) when P, > d,, with , = 0.90, 0.95, 0.99.

* Metrics:

2022-4-1 4
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1.

Hypothesis testing related metrics

— Type 1 error. For negative controls, how often was the null rejected using the

various decision rules. This is equivalent to the false positive rate and 1 - speci-
ficity.

Type 2 error. For positive controls, how often was the null not rejected using
the various decision rules. This is equivalent to the false negative rate and 1 -
sensitivity. Will be stratified by true effect size of the positive controls.
Posterior probability of futility (/, true) at final analysis; only reported for
Bayesian methods.

Sensitivity and specificity based on the various decision rules

Detection time: the number of analyses (months) until signals are claimed for
80% of positive controls. Will be stratified by true effect size of the positive
controls.

Rate of contradictory early decisions. For all controls, how often did an earlier
signal/futility decision contradict the decision based on full analysis of all data.
Rate of “undetermined’’ decisions. At each analysis stage, for all controls,
how often are the decisions”undetermined” (i.e., neither decision threshold is
crossed). For most analyses, we would expect this rate to be high at earlier
stages when there isn’t enough data evidence but gradually lower as more data
accrue.

Estimation related metrics

Area Under the receiver-operator Curve (AUC). The ability to discriminate be-
tween positive controls and negative controls based on the point estimate of
the effect size. Will be stratified by true effect size of the positive controls.
Coverage. How often the true effect size is within the 95% confidence (or cred-
ible) interval.

Mean precision, computed as 1/(standard error)2 (for the Bayesian method,
“standard error’’ is taken as the square root of the posterior distribution vari-
ance)

Mean squared error (MSE). Mean squared error between the log of the effect
size point-estimate (MAP estimate for Bayesian method) and the log of the true
effect size.

— Non-estimable. Measure for how many of the controls was the method unable

to produce an estimate

4 Amendments and Updates

Table 1 lists any protocol amendments made over time.

2022-4-1



;< OHDSI

OBSERVATIONAL HEALTH DATA SCIENCES AND INFORMATICS

Table 1: Protocol amendments

Number Date Section of study Amendment or update Reason
protocol

Table 2: Study milestones

Milestone Planned / actual date

Start of analysis 02/01/2022
End of analysis 08/31/2022
Results presentation  09/30/2022

5 Milestones

Table 2 lists the study milestones.

6 Rationale and Background

Mass vaccination against SARS-CoV-2 is critical to ending the current COVID-19 global
pandemic. By the beginning of 2022, 9 vaccines have been approved under the WHO
Emergency Use List, and more than 10 billion doses have been administered globally by
February 2022 [1]. With the large-scale usage of vaccines under emergency approval,
it is essential to ensure their safety and effectiveness through post-market surveillance,
as rare but serious adverse events may not be identified in phase 3 clinical trials. In the
US, messenger RNA (mRNA) vaccines (BNT162b2, Pfizer-BioNTech; and mRNA-1273,
Moderna) were the first SARS-CoV-2 vaccines authorized and as of February 2022, more
than 500 million doses of mMRNA vaccines have been administered. [2] And yet, there is
limited experience with mRNA platforms previous to SARS-CoV-2, and therefore safety
surveillance is particularly important to inform public health policy and maintain public trust.

The design of a rapid and reliable vaccine safety surveillance system requires an efficient
and robust statistical monitoring approach. The current standard approach used by reg-
ulatory agencies in the US is a frequentist sequential analysis method, MaxSPRT [3]. It
is designed to control the overall analysis Type | error rate of a sequential analysis by
allocating the allowed false positive error over sequential analysis stages. This method
has long suffered from its inflexibility as it requires a pre-specified analysis schedule, and
does not allow extended analysis after the pre-chosen analysis endpoint.

A more flexible sequential analysis method is, therefore, much desired. A promising candi-
date is a Bayesian sequential testing framework. Under a Bayesian framework, multiplicity
of sequential analyses can be handled more elegantly, without the need for a rigid, pre-
specified analysis schedule while allowing continued analyses beyond anticipated end-
points. It is also easier to incorporate historical information into current analyses using a
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prior distribution through Bayesian inference. With all its theoretical advantages, however,
the performance and operating characteristics of Bayesian sequential testing methods
have not yet been extensively studied on large-scale real-world data. In particular, with
observational health data, Bayesian methods can potentially adjust for unmeasured con-
founding and sampling bias, but the performance and behavior have not been evaluated
in a systematic manner.

The goal of this study is to compare the performance of a Bayesian testing framework
with that of MaxSPRT (the current standard approach), in terms of both the hypothesis
testing errors (sensitivity and specificity) and estimation accuracy (in estimating the rela-
tive risks of adverse events of interest). This study will be conducted on various large-
scale health claims databases, in order to understand the operating characteristics in a
real-world data-intensive setting. At the initial stage of the study, all analyses will be per-
formed retrospectively using historical vaccines with more regular roll-out schedules. We
believe the results of our comprehensive evaluations will help us better understand the
performance and behavior of a Bayesian sequential testing framework and facilitate the
design of a more flexible and reliable safety surveillance system for COVID-19 vaccines.

7 Study Objectives

The overarching aim is to compare the performance of frequentist and Bayesian sequential
analysis methods for the generation of evidence of vaccine safety in observational, real-
world data. Specific aims:

» To evaluate and compare the operating characteristics (Type | and Il errors, sensi-
tivity and specificity, etc.) of frequentist and Bayesian sequential testing methods

» To compare the ‘timeliness’ of these methods for the identification of vaccine safety
signals

» To estimate the bias and precision associated with the use of frequentist and
Bayesian methods with self-controlled or historical rates designs for the study of
vaccine safety

* To gain a deeper understanding of the behavior of Bayesian sequential methods;
specifically, the relationship between threshold choices, Type | and Il errors, and
time-to-signal — the study will produce a reference table of estimated Type | and
Il errors and time-to-signal for each combination of Bayesian sequential testing
choices

8 Research Methods

8.1 Exposure-outcome pairs

2022-4-1 7
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Table 3: Exposures of interest.

Exposure Name Start Date End Date History Start Date  History End Date
H1N1pdm vaccination 01-09-2009 31-05-2010 01-09-2008 31-05-2009
Seasonal flu vaccination (Fluvirin) 01-09-2017 31-05-2018 01-09-2016 31-05-2017
Seasonal flu vaccination (Fluzone) 01-09-2017 31-05-2018 01-09-2016 31-05-2017
Seasonal flu vaccination (All) 01-09-2017 31-05-2018 01-09-2016 31-05-2017
Zoster vaccination (Shingrix) 01-01-2018 31-12-2018 01-01-2017 31-12-2017
HPV vaccination (Gardasil 9) 01-01-2018 31-12-2018 01-01-2017 31-12-2017

8.1.1 Exposures

The evaluation will center on six existing (groups of) vaccines, for specific time periods
(start date to end date), as shown in Table 3.

For some methods the period between historical start and historical end date will be used
to estimate the historic incidence rate. For analyses executed on data in the southern
hemisphere (if any) the flu seasons are different, and the study periods will need to be
adjusted accordingly. The formal cohort definitions of each exposure can be found in
Appendix A.

8.1.2 Negative control outcomes

Negative controls are outcomes believed not to be caused by any of the vaccines, and
therefore ideally would not be flagged as a signal by a safety surveillance system. Any
effect size estimates for negative control ideally should be close to the null.

A single set of negative control outcomes is defined for all four vaccine groups. To identify
negative control outcomes that match the severity and prevalence of suspected vaccine
adverse effects, a candidate list of negative controls was generated based on similarity
of prevalence and percent of diagnoses that were recorded in an inpatient setting (as a
proxy for severity). Manual review of this list by clinical experts created the final list of
93 negative control outcomes. The full list of negative control outcomes can be found in
Appendix B

Negative control outcomes are defined as the first occurrence of the negative control con-
cept or any of its descendants.

8.1.3 Imputed positive control outcomes

Positive controls are outcomes known to be caused by vaccines, and ideally would be
detected as signals by a safety surveillance system as early as possible. For various
reasons, real positive controls are problematic.[4] Instead, here we will rely on imputed
positive controls, created by shifting the estimated effect sizes for the negative controls.
We assume the negative controls have a true effect size of 1, so to simulate the estimated

2022-4-1 8
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effect size when the true effect size is # we multiply the estimate by 8. For example, if for a
negative control a method produces an effect size estimate of 1.1, for a positive control with
true effect size of 2 the estimated effect size becomes 1.1 x 2 =2.2. This approach makes
strong assumptions on the nature of the systematic error, most importantly that systematic
error does not change as a function of the true effect size. Although this assumption is
likely not to hold in the real world, imputing positive controls allows us to provide some
indication of what type 2 error to expect for various true effect sizes. For each negative
control we will impute positive controls with true effect sizes of 1.5, 2, and 4, so using the
93 negative controls we are able to construct 93 X 3 = 279 positive control outcomes.
This increased true effect is applied both for the first and second injection of multi-dose
vaccines.

8.1.4 Outcome of special interest — Guillain-Barre Syndrome

In addition to the negative control and imputed positive control outcomes, we will further
investigate the risk of Guillain-Barre Syndrome (GBS) following the zoster vaccine, as
comparison to previous study findings [5]. The previous study by Goud et al. used the
self-controlled case series design to analyze Medicare claims data, and found a signif-
icant elevated risk (risk ratio 2.34, 95% CI, 1.01-5.41). We will use both the historical
comparator and self-controlled designs, apply both frequentist and Bayesian sequential
testing methods, and run analyses on a variety of large-scale databases, in the hope of a
more comprehensive analysis of the risk of GBS post zoster vaccination.

8.2 Data sources

We will execute BETTER as an OHDSI network study. All data partners within OHDSI are
encouraged to participate voluntarily and can do so conveniently, because of the commu-
nity’s shared Observational Medical Outcomes Partnership (OMOP) common data model
(CDM) and OHDSI tool-stack. Many OHDSI community data partners have already com-
mitted to participate and we will recruit further data partners through OHDSI’s standard re-
cruitment process, which includes protocol publication on OHDSI's GitHub, an announce-
ment in OHDSI’s research forum, presentation at the weekly OHDSI all-hands-on meeting
and direct requests to data holders.

Table 4 lists the potential data sources for BETTER; these sources encompass a large va-
riety of practice types and populations. For each data source, we report a brief description
and size of the population it represents. All data sources will receive institutional review
board approval or exemption for their participation before executing BETTER.

8.3 Methods to evaluate

Vaccine safety surveillance methods can be broken down into four components: construc-
tion of a counterfactual (often referred to as the ‘expected count’), a time-at-risk, the esti-
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Table 4. BETTER data sources and the populations they cover.

Data source

Population Patients

History

Data capture process
and short description

IBM MarketScan
Commercial Claims
and Encounters
(CCAE)

IBM MarketScan
Medicare
Supplemental
Database (MDCR)

IBM MarketScan
Multi-State Medicaid
Database (MDCD)

Optum Clinformatics
Data Mart (Optum)

Optum Electronic
Health Records
(OptumEHR)

Commercially insured,  142M

< 65 years

Commercially insured, 10M
65%+$ years

Medicaid enrollees, 26M

racially diverse

Commercially or 85M

Medicare insured

US, general 93M

2000 —

2000 —

2006 —

2000 —

2006 —

Adjudicated health
insurance claims (e.g.
inpatient, outpatient,
and outpatient
pharmacy) from large
employers and health
plans who provide
private healthcare
coverage to
employees, their
spouses and
dependents.
Adjudicated health
insurance claims of
retirees with primary
or Medicare
supplemental
coverage through
privately insured
fee-for-service,
point-of-service or
capitated health plans.
Adjudicated health
insurance claims for
Medicaid enrollees
from multiple states
and includes hospital
discharge diagnoses,
outpatient diagnoses
and procedures, and
outpatient pharmacy
claims.

Inpatient and
outpatient healthcare
insurance claims.
Clinical information,
prescriptions, lab
results, vital signs,
body measurements,
diagnoses and
procedures derived
from clinical notes
using natural
language processing.

2022-4-1
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mation outcome (an estimate or posterior distribution for the effect size), and a decision
rule based on the estimation outcome to differentiate signals from non-signals.

8.3.1 Counterfactual construction

In this study, we mainly focus on two designs for counterfactual construction: historical
comparator and self-controlled case series. The former design is currently the standard
design adopted by various regulatory agencies such as FDA and CDC in the US and the
CDC in the EU, while the latter is a design of rising popularity that has shown satisfactory
performance according to numerous recent studies.

8.3.1.1 Historical Comparator (HC) Traditionally, vaccine surveillance methods com-
pute an expected count based on an incidence rate estimated during some historic time
period, for example, in the years prior to the initiation of the surveillance study. [6][7] We
will use the historical period indicated in Table 8.1 and evaluate four variations:

» Unadjusted, entire year. Using a single rate computed across the entire historic year
for the entire population.

» Age and sex adjusted, entire year. Using a rate stratified by age (in 10 year incre-
ments) and sex, computed across the entire historic year. This allows the expected
rate to be adjusted for the demographics of the vaccinated.

» Unadjusted, time-at-risk relative to outpatient visit. Using a single rate computed
during the time-at-risk relative to a random outpatient visit in the historic year.

» Age and sex adjusted, time-at-risk relative to outpatient visit. Using a rate stratified
by age and sex, computed during the time-at-risk relative to a random outpatient visit
in the historic year.

8.3.1.2 Self-Controlled Case Series (SCCS)/Self-Controlled Risk Interval (SCRI)
The SCCS and SCRI designs are self-controlled, comparing the time-at-risk (the time
shortly following the vaccination) to some other time in the same patient’s record. The
SCCS design uses all patient time when not at risk as the control time. [8] The SCRI
design uses a pre-specified control interval relative to the vaccination date as the control
time. [9] This unexposed time can be both before or after the time at risk.

We will evaluate five variations:

* A simple SCCS, using all patient time when not at risk as the control time, with the
exception of the 30 days prior to vaccination which is excluded from the analysis to
avoid bias due to contra-indications.

* An SCCS adjusting for age and season. Age and season will be modeled to be
constant within each calendar month, and vary across months as bicubic splines.

» A simple SCCS discarding all time prior to vaccination.

* An SCRI, using a control interval of 43 to 15 days prior to vaccination.

2022-4-1 11
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* An SCRI, using a control interval of 43 to 71 days after to vaccination.

8.3.2 Time-at-risk

The time-at-risk is the time window, relative to the vaccination date, when outcomes will
potentially be attributed to the vaccine. We define three time-at-risk windows: 1-28 days,
1-42 days, and 0-1 days after vaccination.

Time-at-risk windows will be constructed both for the first and second dose. The time-at-
risk for one dose will be censored at the time of the next dose.

8.3.3 Estimation Outcome

The effect-size of interest for both the HC and SCCS designs is the (log) relative inci-
dence rate ratio. We obtain slightly different estimation outcomes for the frequentist (i.e.,
MaxSPRT) and Bayesian methods.

For frequentist MaxSPRT, we obtain:

« Effect-size estimate. This is typically a maximum likelihood estimate (MLE) obtained
from the analysis.

* Log likelihood ratio (LLR). The log of the ratio between the likelihood of the alternative
hypothesis (that there is an effect) and the likelihood of the null hypothesis (of no
effect).

The LLR is a convenient and commonly used statistic when performing sequential test-
ing, where the LLR can be compared to a pre-computed critical value, as is done in the
MaxSPRT method. [3] Although typically MaxSPRT uses a historic rate as counterfactual,
any counterfactual can be used to compute the LLR and can be used in MaxSPRT,; our
use of either the HC or SCCS/SCRI design does not affect the validity of using the LLR
as the test statistic.

For the Bayesian method, we obtain:

+ Posterior distribution for the effect-size, approximated by MCMC posterior samples.
This is obtained using the Bayes Rule by combining the likelihood function and the
prior distribution. The end result is not a single point estimate but rather a distribution
profile about our knowledge of the effect-size given accrued data.

+ Maximum A Posteriori (MAP) estimate for the effect-size. This is a point estimate
obtained by extracting the maxima of the posterior density; this estimate can be
regarded as a Bayesian counterpart of the frequentist effect-size estimate.

» Posterior mean for the effect-size. This is a commonly adopted Bayesian estimate,
and is, in fact, the optimal Bayesian estimate with squared loss.

2022-4-1 12
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» Posterior median for the effect-size. This is another commonly adopted Bayesian
estimate, and is also the optimal Bayesian estimate with absolute error loss.

For the Bayesian method, we also evaluate different prior distribution choices for the effect-
size:

« A log-normal prior with mean = 0 and SD = 1.5 (a conservative prior with >90%
mass below 2)

« Alog-normal prior with mean = (0 and SD = 4 (a weakly informed prior with ~70%
mass below 2)

« A log-normal prior with mean = 0 and SD = 10 (a diffuse prior)

We choose to use log-normal priors for their simplicity and wide use, in order to focus
mainly on comparison between Bayesian and frequentist testing methods. We will con-
sider adopting other prior distributions (e.g., Laplace priors) in subsequent studies.

For the frequentist method (MaxSPRT), analyses will be conducted with and without em-
pirical calibration. [10,11]. Empirical calibration will be done using leave-one-out: when
calibrating the estimate for a control, the systematic error distribution will be fitted uses all
controls except the one being calibrated.

For the Bayesian method, inference will be conducted with and without Bayesian bias
adjustment using negative control analyses. Similarly, bias adjustment will be done using
leave-one-out.

8.3.4 Decision rule

To identify ‘signals’ we need a decision rule, for example in the shape of a threshold value
on one of the estimates statistics.

In our experiment, for the frequentist surveillance method, we will consider a decision rule
using the critical value cv computed for the LLR at the @ = 0.05 level. That is, we
will reject the null and claim a signal when LLR > cv. Here all critical values will be
computed using the Sequential package in CRAN.

For the Bayesian method, we will implement two sets of decision rules, one for signal
(rejecting null) and one for futility/safety (accepting null), by examining the posterior prob-
abilities of the null and alternative hypotheses simultaneously:

- If the posterior probability of signal, P, = P(H, true | data) > 4, we claim a
signal,

« If the posterior probability of futility/safety, Py, = P(H,true | data) > &, we
claim safety (non-signal).

We will evaluate three choices of d;: 0.80,0.90,0.95; and also three choices of
00:0.90, 0.95, 0.99.

2022-4-1 13
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8.4 Metrics

As we will conduct both estimation and testing tasks at the same time, we will compute
two sets of metrics based on the study outcomes: (1) metrics for testing, and (2) metrics
for estimation. (Some of the following metrics are adapted from previous work [12].)

1. Testing-related metrics:

» Type 1 error. For negative controls, how often was the null rejected using the various
decision rules. This is equivalent to the false positive rate and 1 - specificity.

» Type 2 error. For positive controls, how often was the null not rejected using the
various decision rules. This is equivalent to the false negative rate and 1 - sensitivity.
Will be stratified by true effect size of the positive controls.

« Posterior probability of futility (/1 true) at final analysis; only reported for Bayesian
methods.

 Sensitivity and specificity based on the various decision rules, as well as prior
choices in the Bayesian method.

» Detection time: the number of analyses (months) until signals are claimed for 80%
of positive controls. This will be stratified by true effect size of the positive controls.

» Rate of contradictory early decisions. For all controls, how often did an earlier sig-
nal/futility decision contradict the decision based on full analysis of all data. This
can serve as a measure of temporal stationarity of the sequential process — if such
contradictory rate is high, then there may be time-varying confounding factors left
unadjusted for.

» Rate of “undetermined’’ decisions. At each analysis stage, for all controls, how
often are the decisions”undetermined” (neither decision thresholds crossed). For
most analyses, we would expect this rate to be high at earlier stages when there
isn’t enough data evidence but gradually lower as more data accrue.

2. Estimation-related metrics:

* Mean precision, computed as 1/(standard error)2 (for the Bayesian method, “stan-
dard error’’ is taken as the square root of the posterior distribution variance)

* Mean squared error (MSE). Mean squared error between the log of the effect size
point-estimate (MAP estimate for Bayesian method) and the log of the true effect
size.

» Area Under the receiver-operator Curve (AUC). The ability to discriminate between
positive controls and negative controls based on the point estimate of the effect size.
Will be stratified by true effect size of the positive controls.

» Coverage. How often the true effect size is within the 95% confidence (or credible)
interval.

* Non-estimable. Measure for how many of the controls was the method unable to
produce an estimate

2022-4-1 14
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8.4.1 Timeliness

To understand the time it takes for a method the identify signals, the study period for each
vaccine will be divided into calendar months. For each month the methods will be executed
using the data that had accumulated up to the end of that month, and the performance
metrics will be reported for each month.

8.4.2 Multiple doses

For those vaccines requiring multiple doses (zoster, HPV), metrics will be computed three
times:

» Treating all doses the same, so computing statistics using both doses without distin-
guishing between first and second.

+ Using the first dose only

* Using the second dose only

8.5 Overview of analyses

In total, we will evaluate:

* 9 counterfactuals

+ 3 times at risk (0-1, 1-28, and 1-42 days)

» 6 vaccines, withatotalof 9+ 9+ 9+ 9+ 12 + 12 = 60 time periods

* 93 negative controls

« 3 X 93 = 279 positive controls

» 1 outcome of special interest

+ 3 dose definitions (both, first, second) for the zoster and HPV vaccines, 1 for
H1N1pdm and seasonal flu.

* 4 prior distribution choices (Bayesian only)

« 3 X 3 = 9 decision rule thresholds (Bayesian only)

For the frequentist MaxSPRT method, this will result in a total of 9 X 3 X [(9+9 + 9 +
9) X 1+(12+12) x 3] X (93 + 279 + 1) = 1,087,668 effect-size estimates, where each
estimate will contain:

» The effect-size estimate with 95% confidence interval and p-value.
* The empirically calibrated effect-size estimate and p-value
* The LLR

For the Bayesian method, this will result in a total of 9 X 3 X [(9+9+9+9) X 1 + (12
+12) X 3] X (93 + 279 + 1) X 4 = 4,350,672 estimation outcomes, where each outcome
will include:

» The posterior distribution profile of effect-size with MAP estimate
» The empirically calibrated effect-size posterior distribution profile with MAP estimate
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 The decision (signal or safety) made based on the 3 x 3 = 9 different decision rule

thresholds

These analysis results will be computed for each database.

9 Strengths and Limitations

9.1

9.2

Strengths

Use and comprehensive evaluation of Bayesian sequential analysis methods for
vaccine safety surveillance on large-scale real-world data.

Use of self-controlled case series in addition to historical comparator methods, as
the former method is less subject to unmeasured confounding and systematic error.
Use of real negative and synthetic positive control outcomes provides an indepen-
dent estimate of residual bias in the experiment.

The fully specified study protocol is being published before analysis begins.
Dissemination of the results will not depend on estimated effects, avoiding publica-
tion bias.

All analytic methods have previously been verified on real data.

All software is freely available as open source.

Use of a common data model allows extension of the experiment to future databases
and allows replication of these results on licensable databases that were used in this
experiment, while still maintaining patient privacy on patient-level data.

Use of multiple databases allows estimating consistency to add credibility and sup-
ports generalizability.

Limitations

Even though many potential confounders will be included in this study, there may be
residual bias due to unmeasured or misspecified confounders, such as confounding
by indication, differences in physician characteristics that may be associated with
drug choice, concomitant use of other drugs started after the index date, and infor-
mative censoring at the end of the on-treatment periods. To minimize this risk, we
used methods to detect residual bias through our negative and positive controls.
Our follow-up times are limited and variable, potentially reducing power to detect
differences in effectiveness and safety.

We assume hazards are not time varying, and we (at this stage) do not investigate
time-varying confounding.

We only adopt two commonly used study designs (at this stage) which may not be
the most suitable design for vaccine safety surveillance situations with complex roll-
out schedules (e.g., COVID-19 vaccines).
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.
Table 5: IRB approval or waiver statement from partners.

Data source Statement

IBM MarketScan Commercial New England Institutional Review Board and was determined to be exempt from broad IRB
Claims and Encounters (CCAE) approval, as this research project did not involve human subject research.

IBM MarketScan Medicare New England Institutional Review Board and was determined to be exempt from broad IRB
Supplemental Database (MDCR) approval, as this research project did not involve human subject research.

IBM MarketScan Multi-State New England Institutional Review Board and was determined to be exempt from broad IRB
Medicaid Database (MDCD) approval, as this research project did not involve human subject research.

Optum Clinformatics Data Mart New England Institutional Review Board and was determined to be exempt from broad IRB
(Optum) approval, as this research project did not involve human subject research.

Optum Electronic Health Records =~ New England Institutional Review Board and was determined to be exempt from broad IRB
(OptumEHR) approval, as this research project did not involve human subject research.

» Misclassification of study variables is unavoidable in secondary use of health data,
so it is possible to misclassify treatments, covariates, and outcomes; we do not
expect differential misclassification, so bias will most likely be towards the null.

10 Protection of Human Subjects

BETTER does not involve human subjects research. The project does, however, use
de-identified human data collected during routine healthcare provision. All data partners
executing the BETTER studies within their data sources will have received institutional
review board (IRB) approval or waiver for participation in accordance to their institutional
governance prior to execution (see Table 5). BETTER executes across a federated and
distributed data network, where analysis code is sent to participating data partners and
only aggregate summary statistics are returned, with no sharing of patient-level data be-
tween organizations.

11 Management and Reporting of Adverse Events and
Adverse Reactions

BETTER uses coded data that already exist in electronic databases. In these types of
databases, it is not possible to link (i.e., identify a potential causal association between) a
particular product and medical event for any specific individual. Thus, the minimum criteria
for reporting an adverse event (i.e., identifiable patient, identifiable reporter, a suspect
product and event) are not available and adverse events are not reportable as individual
adverse event reports. The study results will be assessed for medically important findings.
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12 Plans for Disseminating and Communicating Study
Results

Open science aims to make scientific research, including its data process and software,
and its dissemination, through publication and presentation, accessible to all levels of an
inquiring society, amateur or professional [13] and is a governing principle of BETTER.
Open science delivers reproducible, transparent and reliable evidence. All aspects of
BETTER (except private patient data) will be open and we will actively encourage other
interested researchers, clinicians and patients to participate. This differs fundamentally
from traditional studies that rarely open their analytic tools or share all result artifacts, and
inform the community about hard-to-verify conclusions at completion.

12.1 Transparent and re-usable research tools

We will publicly register this protocol and announce its availability for feedback from stake-
holders, the OHDSI community and within clinical professional societies. This protocol will
link to open source code for all steps to generating diagnostics, effect estimates, figures
and tables. Such transparency is possible because we will construct our studies on top
of the OHDSI toolstack of open source software tools that are community developed and
rigorously tested [12]. We will publicly host BETTER source code at URL TBD, allowing
public contribution and review, and free re-use for anyone’s future research.

12.2 Continous sharing of results

BETTER embodies a new approach to generating evidence from healthcare data that
overcome weaknesses in the current process of answering and publishing (or not) one
question at a time. Generating evidence for thousands of research and control questions
using a systematic process enables us to not only evaluate that process and the coherence
and consistency of the evidence, but also to avoid p-hacking and publication bias [4]. We
will store and openly communicate all of these results as they become available using a
user-friendly web-based app that serves up all descriptive statistics, study diagnostics and
effect estimates for each cohort comparison and outcome. Open access to this app will
be through a general public facing BETTER web-page.

12.3 Scientific meetings and publications

We will deliver multiple presentations at scientific venues and will also prepare multiple
scientific publications for clinical, informatics and statistical journals.
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12.4 General public

We believe in sharing our findings that will guide clinical care with the general public. BET-
TER will use social-media (Twitter) to facilitate this. With dedicated support from the
OHDSI communications specialist, we will deliver regular press releases at key project
stages, distributed via the extensive media networks of UCLA and Columbia.
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A Exposure Cohort Definitions

A.1 H1N1pdm Vaccines
A.1.1 Cohort Entry Events

People enter the cohort when observing any of the following:

1. drug exposures of ‘H1N1 vaccine,’ starting between September 1, 2009 and May 31,
2010.

Limit cohort entry events to the earliest event per person.

A.1.2 Cohort Exit

The cohort end date will be offset from index event’s start date plus 0 days.

A.1.3 Cohort Eras

Entry events will be combined into cohort eras if they are within 0 days of each other.

A.1.4 Concept set: H1IN1 vaccine

Concept ID  Concept Name Code Vocabulary  Excluded Descendants Mapped

40213187 Novel influenza-H1N1-09, all formulations 128 CVvX NO YES NO|

40166607 influenza A-California-7-2009-(H1N1)v-like virus 864704 RxNorm NO YES NO|
vaccine 0.03 MG/ML Injectable Suspension

40166130 0.25 ML influenza 864781 RxNorm NO YES NO|

A-California-7-2009-(H1N1)v-like virus vaccine
0.03 MG/ML Prefilled Syringe
40166144 0.5 ML influenza 864797 RxNorm NO YES NO|
A-California-7-2009-(H1N1)v-like virus vaccine
0.03 MG/ML Prefilled Syringe

42902936 influenza A-California-7-2009-(H1N1)v-like virus 1360049 RxNorm NO YES NO|
vaccine 0.03 MG/ML Prefilled Syringe

40240135 influenza A-California-7-2009-(H1N1)v-like virus 1111367 RxNorm NO YES NO|
vaccine 0.09 MG/ML

40225009 influenza A-California-7-2009-(H1N1)v-like virus 1005949 RxNorm NO YES NO|
vaccine 0.12 MG/ML

40166608 influenza A-California-7-2009-(H1N1)v-like virus 864812 RxNorm NO YES NO|

vaccine 158000000 UNT/ML
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45776785 influenza A-California-7-2009-(H1N1)v-like virus 1543758 RxNorm NO YES NO|
vaccine 50000000 MG/ML

40166609 influenza A-California-7-2009-(H1N1)v-like virus 864703 RxNorm NO YES NO|
vaccine Injectable Suspension

40166611 influenza A-California-7-2009-(H1N1)v-like virus 864780 RxNorm NO YES NO|

vaccine Prefilled Syringe

A.2 Seasonal Flu Vaccines (Fluvirin)
A.2.1 Cohort Entry Events

People enter the cohort when observing any of the following:
1. drug exposures of ‘Fluvirin,” starting between September 1, 2017 and May 31, 2018.

Limit cohort entry events to the earliest event per person.

A.2.2 Cohort Exit

The cohort end date will be offset from index event’s start date plus 0 days.

A.2.3 Cohort Eras

Entry events will be combined into cohort eras if they are within 0 days of each other.

A.2.4 Concept set: Fluvirin

Concept ID  Concept Name Code Vocabulary  Excluded Descendants Mapped

1593906 influenza A virus A/Hong Kong/4801/2014 (H3N2) 1928971 RxNorm NO YES NO|
antigen 0.03 MG/ML / influenza A virus
A/Singapore/GP1908/2015 (H1N1) antigen 0.03
MG/ML / influenza B virus B/Brisbane/60/2008
antigen 0.03 MG/ML [Fluvirin 2017-2018]

A.3 Seasonal Flu Vaccines (Fluzone)
A.3.1 Cohort Entry Events

People enter the cohort when observing any of the following:

1. drug exposures of ‘Fluzone,’ starting between September 1, 2017 and May 31, 2018.
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Limit cohort entry events to the earliest event per person.

A.3.2 Cohort Exit

The cohort end date will be offset from index event’s start date plus 0 days.

A.3.3 Cohort Eras

Entry events will be combined into cohort eras if they are within 0 days of each other.

A.3.4 Concept set: Fluzone

Concept ID  Concept Name Code Vocabulary  Excluded Descendants Mapped

1593354 influenza A virus A/Hong Kong/4801/2014 (H3N2) 1928341 RxNorm NO YES NO|
antigen 0.12 MG/ML / influenza A virus
A/Michigan/45/2015 (H1N1) antigen 0.12 MG/ML
/ influenza B virus B/Brisbane/60/2008 antigen
0.12 MG/ML [Fluzone 2017-2018]

A.4 Seasonal Flu Vaccines (All)
A.4.1 Cohort Entry Events

People enter the cohort when observing any of the following:

1. drug exposures of ‘Seasonal flu vaccine,’ starting between September 1, 2017 and
May 31, 2018.

Limit cohort entry events to the earliest event per person.

A.4.2 Cohort Exit

The cohort end date will be offset from index event’s start date plus 0 days.

A.4.3 Cohort Eras

Entry events will be combined into cohort eras if they are within 0 days of each other.

A.4.4 Concept set: Seasonal flu vaccine

ConceptID  Concept Name Code Vocabulary  Excluded Descendants Mapped
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40213145 influenza, injectable, quadrivalent, contains 158 CvX NO YES NO|
preservative

42903442 influenza B virus 1312376 RxNorm NO YES NO|

40213150 influenza, live, intranasal, quadrivalent 149 CvX NO YES NO|

40213159 influenza virus vaccine, whole virus 16 CvX NO YES NO|

40225028 influenza virus vaccine, inactivated 1005931 RxNorm NO YES NO|

A-Victoria-210-2009 X-187 (H3N2)
(A-Perth-16-2009) strain

40213156 influenza virus vaccine, split virus (incl. purified 15 CvX NO YES NO|
surface antigen)-retired CODE

40213151 Seasonal, trivalent, recombinant, injectable 155 CvX NO YES NO|
influenza vaccine, preservative free

40213327 influenza nasal, unspecified formulation 151 CvX NO YES NO|

40213148 influenza, intradermal, quadrivalent, preservative 166 CvX NO YES NOJ
free, injectable

40213158 influenza virus vaccine, unspecified formulation 88 CvX NO YES NO|

36878713 Influenza Virus Fragmented, Inactivated, Strain B~ OMOP98957 RxNorm NO YES NO|
/ Phuket / 3073/2013 Extension

42873961 influenza B virus vaccine, 1303855 RxNorm NO YES NO|
B-Wisconsin-1-2010-like virus

40225038 influenza virus vaccine, live attenuated, 1005911 RxNorm NO YES NO|
A-Perth-16-2009 (H3N2) strain

40213146 Influenza, injectable, quadrivalent, preservative 150 CvX NO YES NO|
free

40213143 Influenza, injectable, Madin Darby Canine Kidney, 171 CVvX NO YES NO|
preservative free, quadrivalent

36879025 Influenza Virus Surface Antigens, strain A/ OMOP991645RxNorm NO YES NO|
Switzerland / 9715293/2013 H3N2 - Analogue Extension
Strain Nib-88

40213157 Seasonal trivalent influenza vaccine, adjuvanted, 168 CvX NO YES NO|
preservative free

45776076 influenza A virus vaccine, A-Texas-50-2012 1541617 RxNorm NO YES NOJ
(H3N2)-like virus

40213149 influenza virus vaccine, live, attenuated, for 111 CVvX NO YES NO|
intranasal use

40213147 Influenza, injectable,quadrivalent, preservative 161 CvX NO YES NO|
free, pediatric

40213152 Seasonal, quadrivalent, recombinant, injectable 185 CVvX NO YES NO|
influenza vaccine, preservative free

42903441 influenza A virus 1312375 RxNorm NO YES NO|

40213141 influenza, high dose seasonal, preservative-free 135 CVvX NO YES NO|

40213153 Influenza, seasonal, injectable 141 CvX NO YES NO|

40213144 Influenza, injectable, Madin Darby Canine Kidney, 186 CvX NO YES NO|
quadrivalent with preservative

40213142 Influenza, injectable, Madin Darby Canine Kidney, 153 CvX NO YES NO|
preservative free

40213155 seasonal influenza, intradermal, preservative free 144 CvX NO YES NO|

40164828 influenza B virus vaccine B/Brisbane/60/2008 857921 RxNorm NO YES NO|
antigen

A.5 HPV Vaccines
A.5.1 Cohort Entry Events

People enter the cohort when observing any of the following:
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1. drug exposures of ‘Gardasil 9,” starting between January 1, 2018 and December 31,
2018.

A.5.2 Cohort Exit

The cohort end date will be offset from index event’s start date plus 0 days.

A.5.3 Cohort Eras

Entry events will be combined into cohort eras if they are within O days of each other.

A.5.4 Concept set: Gardasil 9

Concept ID  Concept Name Code Vocabulary  Excluded Descendants Mapped
36248866 Gardasil 9 Injectable Product 1597098 RxNorm NO YES NO|
45892513 L1 protein, human papillomavirus type 11 vaccine 1597102 RxNorm NO YES NO|

/ L1 protein, human papillomavirus type 16
vaccine / L1 protein, human papillomavirus type
18 vaccine / L1 protein, human papillomavirus
type 31 vaccine / L1 protein, human
papillomavirus type 33 vaccine /
45892514 0.5 ML L1 protein, human papillomavirus type 11 1597103 RxNorm NO YES NO|
vaccine 0.08 MG/ML / L1 protein, human
papillomavirus type 16 vaccine 0.12 MG/ML / L1
protein, human papillomavirus type 18 vaccine
0.08 MG/ML / L1 protein, human papillomavirus
type 31 vaccine 0.04 MG/ML /
45892510 0.5 ML L1 protein, human papillomavirus type 11 1597099 RxNorm NO YES NO|
vaccine 0.08 MG/ML / L1 protein, human
papillomavirus type 16 vaccine 0.12 MG/ML / L1
protein, human papillomavirus type 18 vaccine
0.08 MG/ML / L1 protein, human papillomavirus
type 31 vaccine 0.04 MG/ML /
40213322 Human Papillomavirus 9-valent vaccine 165 CVvX NO YES NO|

A.6 Zoster Vaccines
A.6.1 Cohort Entry Events

People enter the cohort when observing any of the following:

1. drug exposures of ‘Shingrix,” starting between January 1, 2018 and December 31,
2018.
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A.6.2 Cohort Exit

The cohort end date will be offset from index event’s start date plus 0 days.

A.6.3 Cohort Eras

Entry events will be combined into cohort eras if they are within 0 days of each other.

A.6.4 Concept set: Shingrix

Concept ID  Concept Name Code Vocabulary  Excluded Descendants Mapped

792784 varicella zoster virus glycoprotein E Injection 1986828 RxNorm NO YES NO|
[Shingrix]

792783 varicella zoster virus glycoprotein E, recombinant 1986827 RxNorm NO YES NO|
0.1 MG/ML [Shingrix]

792788 varicella zoster virus glycoprotein E, recombinant 1986832 RxNorm NO YES NO|
0.1 MG/ML Injection [Shingrix]

36421491 Varicella-Zoster Virus Vaccine Live (Oka-Merck) OMOP476377&RxNorm NO YES NO|
strain Injectable Solution [Shingrix] Extension

792785 Shingrix Injectable Product 1986829 RxNorm NO YES NO|

706103 zoster vaccine recombinant 187 CvX NO YES NO|

B Negative controls

Table 12: Negative control outcomes.

Outcome Id  Outcome Name

438945  Accidental poisoning by benzodiazepine-based tranquilizer
434455  Acquired claw toes
316211 Acquired spondylolisthesis
201612  Alcoholic liver damage
438730  Alkalosis
441258  Anemia in neoplastic disease
432513  Animal bite wound
4171556  Ankle ulcer
4098292  Antiphospholipid syndrome
77650 Aseptic necrosis of bone
4239873  Benign neoplasm of ciliary body
23731  Benign neoplasm of larynx
199764  Benign neoplasm of ovary
195500 Benign neoplasm of uterus
4145627  Biliary calculus
4108471  Burn of digit of hand
75121  Burn of lower leg
4284982  Calculus of bile duct without obstruction
434327 Cannabis abuse
78497  Cellulitis and abscess of toe
4001454  Cervical spine ankylosis
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4068241
195596
4206338
4058397
74816
73302
4151134
77638
195864
201346
200461
377877
193530
4094822
443421
4299408
135215
442190
43020475
194149
443204
4226238
4032787
197032
140362
435371
138690
4152376
192953
196347
137977
317510
765053
378165
434085
4147016
4129404
438120
75924
432594
30365
4108371
440367
439233
442149
4314086
4147660
434319
199754
4311499
436635
196044
433716
133424
194997
80286
443274
314962
37018294
4288241
45757269

2022-4-1

Chronic instability of knee

Chronic pancreatitis

Chronic salpingitis

Claustrophobia

Contusion of toe

Curvature of spine

Cyst of pancreas

Displacement of intervertebral disc without myelopathy
Diverticulum of bladder

Edema of penis

Endometriosis of uterus

Esotropia

Follicular cyst of ovary

Foreign body in respiratory tract
Gallbladder and bile duct calculi

Gouty tophus

Hashimoto thyroiditis

Hemorrhage of colon

High risk heterosexual behavior
Hirschsprung’s disease

Human ehrlichiosis

Hyperosmolar coma due to diabetes mellitus
Hyperosmolarity

Hyperplasia of prostate
Hypoparathyroidism

Hypothermia

Infestation by Pediculus
Intentional self poisoning

Intestinal adhesions with obstruction
Intestinal parasitism

Jaundice

Leukemia

Lump in right breast

Nystagmus

Obstruction of duodenum

Open wound of buttock

Open wound of upper arm

Opioid dependence

Osteodystrophy

Osteomalacia

Panhypopituitarism

Peripheral gangrene

Plasmacytosis

Poisoning by antidiabetic agent
Poisoning by bee sting

Poisoning due to sting of ant

Postural kyphosis

Premature ejaculation

Primary malignant neoplasm of pancreas
Primary malignant neoplasm of respiratory tract
Primary malignant neoplasm of sigmoid colon
Primary malignant neoplasm of stomach
Primary malignant neoplasm of testis
Primary malignant neoplasm of thyroid gland
Prostatitis

Prosthetic joint loosening
Psychostimulant dependence

Raynaud’s disease

Residual osteitis

Salmonella enterica subspecies arizonae infection
Sclerosing mesenteritis
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74722  Secondary localized osteoarthrosis of pelvic region
200348  Secondary malignant neoplasm of large intestine
43020446  Sedative withdrawal
74194  Sprain of spinal ligament
4194207  Tailor’s bunion
193521  Tropical sprue
40482801  Type Il diabetes mellitus uncontrolled
74719  Ulcer of foot
196625 Viral hepatitis A without hepatic coma
197494  Viral hepatitis C
4284533  Vitamin D-dependent rickets

C Additional investigated outcome cohort

C.1 Adverse Event Outcome - Guillain Barre Syndrome
C.1.1 Cohort Entry Events

People may enter the cohort when observing any of the following:

1. condition occurrences of ‘Guillian-Barre syndrome.’

Restrict entry events to having at least 1 visit occurrence of ‘Inpatient or Inpatient/ER visit,
starting anytime on or before cohort entry start date and ending between 0 days before
and all days after cohort entry start date.

C.1.2 Inclusion Criteria

C.1.21 1. has no events in prior ‘clean window’ Entry events having no condition
occurrences of ‘Guillian-Barre syndrome,’ starting in the 365 days prior to cohort entry
start date; allow events outside observation period; having at least 1 visit occurrence of
‘Inpatient or Inpatient/ER visit,” starting anytime on or before ‘Guillian-Barre syndrome’
start date and ending between 0 days before and all days after ‘Guillian-Barre syndrome
start date.

C.1.3 Cohort Exit

The cohort end date will be offset from index event’s start date plus 1 day.

C.1.4 CohortEras

Entry events will be combined into cohort eras if they are within 0 days of each other.

C.1.5 Concept set: Guillian-Barre syndrome
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Concept ID  Concept Name Code Vocabulary  Excluded Descendants Mapped
374925 Acute infective polyneuritis 129131007 SNOMED NO YES NO|
4164770 Guillain-Barre syndrome 40956001 SNOMED NO YES NO|
4070552 Fisher’s syndrome 1767005 SNOMED NO YES NO|
C.1.6 Concept set: Inpatient or Inpatient/ER visit
ConceptID  Concept Name Code Vocabulary  Excluded Descendants Mapped
262 Emergency Room and Inpatient Visit ERIP Visit NO YES NO|
9201 Inpatient Visit 1P Visit NO YES NO|
2022-4-1 28
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