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INTRODUCTION	

While	well-established	methods	for	time-to-event	data	are	available	when	the	proportional	hazards	
assumption	holds,	there	is	no	consensus	on	the	best	approach	under	non-proportional	hazards	(NPH).	
However,	a	wide	range	of	parametric	and	non-parametric	methods	for	testing	and	estimation	in	this	scenario	
have	been	proposed.	

We	have	performed	a	systematic	review	of	the	scientific	literature	to	identify	available	options	for	methods	
for	testing	and	estimation	under	NPH.	In	CONFIRMS	(2022a)	we	performed	a	systematic	literature	search	for	
methodological	approaches	for	any	NPH	scenario,	any	model	class	and	not	restricted	to	a	specific	disease	area.	
Our	review	complements	previous	review	articles	that	have	focused	mostly	on	quantitative	comparisons	for	
specific	NPH	scenarios,	e.g.	Li	et	al.	(2015),	for	a	specific	method	class,	e.g.	Rauch	et	al.	(2018),	or	for	NPH	
situations	in	specific	disease	areas,	e.g.	oncology	(Ananthakrishnan	et	al.	(2021)).	

We	identified	a	large	number	of	articles	that	compare	newly	proposed	methods	to	alternatives	using	
simulation	studies.	However,	we	suspect	that	the	simulation	assumptions	could	have	been	chosen	in	order	to	
demonstrate	superiority	of	the	new	method	(Boulesteix	et	al.	(2020)).	In	particular,	we	identified	only	a	few	
review	articles	that	compared	a	broader	set	of	methods	using	simulation	studies	without	the	objective	to	
demonstrate	the	advantages	of	a	newly	proposed	method.	Although	these	articles	cover	a	broad	range	of	NPH	
settings	they	were	limited	to	testing	procedures	and	guidance	on	the	choice	of	the	test	is	not	consistent	
between	studies.	We	did	not	identify	any	reviews	that	provide	a	neutral	comparison	of	methods	with	respect	
to	effect	estimation.	Consequently,	we	will	perform	a	comprehensive	simulation	study	to	evaluate	the	
performance	characteristics	for	a	selection	of	analysis	methods	identified	in	our	review,	including	methods	for	
testing	and	estimation.	

In	addition	we	performed	a	review	of	past	marketing	authorization	procedures,	where	NPH	were	discussed	in	
the	EMA	European	Assessment	Report	(EPAR)	(CONFIRMS	(2022b)).	We	identified	16	procedures	reporting	
results	from	18	distinct	trials.	The	majority	of	the	corresponding	treatments	are	from	the	oncology	domain	
with	exceptions	from	influenza	(human),	multiple	sclerosis,	conscious	sedation,	and	cardiovascular	disease.	
We	managed	to	extract	a	wealth	of	results	from	the	included	studies.	This	includes:	sample	sizes,	median	
survival	times,	and	hazard	ratios.	In	addition,	we	digitised	survival	curves,	allowing	us	to	reconstruct	
individual	patient	data	close	to	the	actual	observations	from	specific	examples.	Consequently,	we	obtained	a	
wide	range	of	data	from	actual	trials	that	will	form	the	basis	for	the	assumptions	underlying	the	distributional	
scenarios	for	this	simulation	study.	Especially,	reconstructed	individual	patient	level	data	will	be	useful	to	
construct	case	studies	to	illustrate	eventual	findings,	based	on	re-analyses	of	the	data	and	resampling	from	the	
extracted	survival	and	censoring	distribution.	
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The	various	types	of	NPH	issues	identified	and	the	related	discussions	in	the	identified	EPARs	will	be	useful	to	
derive	regulatory	recommendations	on	how	to	address	the	corresponding	implications	in	future	marketing	
authorization	procedures.	

The	simulation	study	is	planned	following	the	clinical	scenario	evaluation	approach	by	Benda	et	al.	(2010)	and	
Friede	et	al.	(2010),	as	well	as	recommendations	provided	in	Morris	et	al.	(2019).	The	simulation	study	will	
cover	a	range	of	different	assumptions	regarding	the	underlying	statistical	model	and	parameters,	investigate	
different	clinical	trial	design	options	and	compare	the	performance	characteristics	of	a	broad	set	of	statistical	
methods	for	the	analysis	of	time	to	event	data	under	NPH.	

OBJECTIVES	

The	objective	of	this	simulation	study	is	to	evaluate	the	operating	characteristics	of	selected	statistical	
methods	for	testing	and	estimation	in	clinical	trials	with	time-to-event	endpoints	under	NPH,	considering	a	
wide	range	of	plausible	distributional	assumptions	and	for	a	number	of	typical	design	options,	and	thereby	
addresses	Objective	2	(see	Main	Study	Protocol	-	Section	1.3)	of	the	overarching	research	project.	
In	a	next	step,	we	will	illustrate	and	complement	the	results	from	the	simulation	study	using	case	studies,	for	
which	individual	level	patient	data	are	reconstructed	and	re-analysed	using	potentially	also	additional	
methods	not	considered	in	this	simulation	study.	This	will	form	the	basis	to	address	the	remaining	Objective	3	
which	aims	to	“assess	the	regulatory	acceptability	of	these	methods	for	clinical	trials	that	are	pivotal	for	drug	
development	and	benefit-risk	assessment	and	derive	recommendations”	(Main	Study	Protocol	-	Section	1.3).		
In	addition	to	facilitate	the	performance	of	the	simulation	study	we	will	implement	a	software	package	to	
facilitate	simulation	of	time-to-event	data,	which	will	be	developed	and	published	as	an	open-source	software	
package	using	the	statistical	programming	language	R	(R	Core	Team	(2022)),		

Clinical	Scenario	Evaluation	Framework	

The	clinical	scenario	evaluation	(CSE)	framework	includes	three	key	elements:		

1. Assumptions	define	the	distributional	scenarios	and	corresponding	data	generating	process	and	
represent	external	conditions	that	are	not	under	the	control	of	the	experimenter.	The	assumptions	
are	sometimes	also	referred	to	as	disease-specific	features;	some	of	which	can	be	estimated	from	
previous	studies	and	some	might	need	to	be	assumed.	

2. Options	define	the	design	choices,	analysis	methods	as	well	as	other	aspects	that	are	under	the	
control	of	the	experimenter	although	some	options	might	be	constrained	by	the	infrastructure,	
resources	or	the	healthcare	environment	

3. Metrics	define	the	set	of	statistics	quantifying	the	operating	characteristic	of	a	specific	option,	which	
are	to	be	computed	using	simulation.	

The	combinations	of	assumptions	and	options	define	scenarios,	for	which	the	metrics		are	to	be	evaluated	in	
the	simulation	study.	For	the	present	study	the	assumptions	define	specific	distributions	with	NPH	(e.g.	
delayed	treatment	effects).	Here	the	assumptions	are	selected	based	on	clinical	relevance,	taking	into	account	
findings	from	the	EPAR	Review	(CONFIRMS	2022b).	Options	mainly	represent	different	clinical	trial	designs	
(e.g.	fixed	sample	design),	and	different	analysis	methods	(e.g.	weighted	log-rank	tests).		The	metrics	are	
meant	to	reflect	in	particular	regulatory	considerations	on	the	validity	of	the	statistical	procedure		including	
bias,	type	I	error	rate	and	coverage	probabilities	of	confidence	intervals.	

ASSUMPTIONS	

The	general	approach	of	this	simulation	study	will	be	to	simulate	individual	participant	data	(IPD)	
encompassing	recruitment	times,	event	times,	censoring	times,	as	well	as	additional	features	such	as	
progression-,	or	study-withdrawal	times,	and	biomarker	status,	where	applicable.	

Simulation	of	data	will	follow	three	approaches:	
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1. For	the	main	part	we	assume	piecewise	constant	hazards	with	potentially	different	hazard	rates	in	
different	treatment	arms,	over	certain	time	periods,	following	specific	events	or	according	to	
biomarker	status	(see	Section	Piecewise	Constant	Hazard	below).	

2. More	sophisticated	parametric,	pharmacometric	models	(see	Section	Joint	Models	below)	may	be	used	
to	generate	specific	scenarios	of	interest.		

3. In	addition,	we	will	reconstruct	individual	participant	data	from	(IPD)	Kaplan	Meier	plots	published	
in	selected	EPARs	to		sample	from	examples	of	actual	trials	(see	Bootstrap	from	IPD	below).	

Further	details	on	how	the	three	approaches	will	be	implemented	and	parameter	values	will	be	chosen	to	
achieve	survival	characteristics	(e.g.	crossing	survival	curves,	powers	within	sample	size	range)	of	selected	
broad	assumption	sets	are	given	in	the	corresponding	sections	below.	

With	this	simulation	study	we	intend	to	explore	the	following		broad	assumptions	sets:	

• Proportional	hazards,	as	a	reference	scenario,	
• Late	separation	of	survival	curves,		
• Crossing	hazard	curves	
• Differential	treatment	effect	in	a	subgroup	(subgroups	will	be	assumed	to	be	known	or	unknown)	
• Change	of	treatment	effect	following	an	intercurrent	event	(e.g.	treatment	switching)	

Parameter	ranges	will	be	derived	so	that	they	match	the	broad	assumption	sets	above	and	cover	the	
characteristics	of	the	studies	observed	in	the	EPAR	review.	Table	1	provides	a	list	of	parameters	and	
corresponding	settings	that	will	be	explored	for	each	scenario.	Parameter	settings	are	formulated	in	terms	of	
broad	overall	features	of	the	resulting	survival	distributions	to	match	characteristics	of	relevant	clinical	
scenarios	taking	into	account	findings	from	the	EPAR	review	(CONFIRMS	(2022b)).		
The	parameters	of	the	data	generating	process	under	the	considered	approaches	(e.g.	piecewise	constant	
hazards)	will	be	calibrated	to	match	these	overall	features.	For	certain	scenarios,	e.g.	crossing	hazard	curves,		
where	the	hazard	ratio	before	and	after	time	of	onset	need	to	be	fixed,	additional	degrees	of	freedom	in	terms	
of	parameter	settings	may	remain	and	will	be	chosen	based	on	plausible	assumptions,	taking	the	results	from	
the	EPAR	review	into	account.	Reasonable	simplifications	will	be	made	that	cover	the	relevant	parts	of	the	
parameter	space.	The	general	approach	on	how	this	will	be	achieved	is	described	in	Column	Implementation	of	
Table	1	with	additional	details	provided	in	the	Section	Piecewise	Constant	Hazards.	
Not	all	scenarios	will	be	considered		for	Joint	Models	and	Bootstrap	from	IPD.	The	purpose	of	the	Joint	Model	
will	be	to	generate	scenarios	where	non-proportional	hazards	are	caused	by	more	complex	mechanisms	(e.g.	
delayed	onset	of	treatment	effect	and	change	of	treatment	effect	after	disease	progression,	e.g.,	due	to	
treatment	switching).	The	purpose	of	Bootstrap	from	IPD	will	be	to	sample	from	survival	distributions	close	to	
actual	trial	data	and	evaluate	and	compare	different	methods	in	such	a	setting.	
While	parameter	ranges	are	chosen	based	on	results	from	the	EPAR	Review	(CONFIRMS	2022b),	in	order	to	
reflect	realistic	settings	of	time-to-event	data	under	NPH,	certain	combinations	of	different	parameter	settings	
may	lead	to	implausible	or	irrelevant	scenarios.	Similarly,	it	is	not	guaranteed	that	the	resulting	parameter	
space	covers	all	relevant	settings.	Should	we	identify	corresponding	scenarios	e.g.	during	calibration,	or	
software	testing,	additional	scenarios	may	be	added	or	removed.	Any	corresponding	changes	to	the	overall	
assumption	set	will	be	documented	and	justified	in	the	study	report.			
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Table	1:	Assumption	set	describing	the	distributional	scenarios	considered	for	the	simulation	study.	

Assumption Parameters Ranges Implementation 

Control arm hazards hazard function mild, moderate, 
aggressive 

Will be calibrated to achieve plausible 
ranges with median time-to-event of 36 

months (mild), 12 months (moderate) 
and 6 months (aggressive) as observed 

in the EPAR review (CONFIRMS (2022b) 
Fig. 2).   

Effect sizes depends on scenario 
and estimand 

no, small, moderate, 
large  

Parameters governing the difference in 
survival curves  will be set to provide about 
50% (small), 80% (moderate), and 90% 
(large) power under the reference scenario 
(PH) with log-rank test. For scenarios under 
NPH parameters will be chosen to yield 
identical median survival times as in the 
reference (PH) scenario. 

Non-informative study-
withdrawal 

proportion of study-
withdrawal 

no study-withdrawal, 
medium, or substantial 
study-withdrawal 

Study withdrawal will be simulated in 
addition to administrative censoring at study 
end using exponential distribution. 
Corresponding rate parameters will be 
calibrated to yield ~10% or ~30% of 
subjects with event times censored due to 
study withdrawal (medium, substantial study 
withdrawal).   

Delayed onset of treatment 
effect Time of onset 1 to 9 months 

Corresponding parameters will be calibrated 
to yield survival functions that separate at 
time-points compatible with ranges 
observed in the EPAR review (CONFIRMS 
(2022b), Table 7)  

 HR after onset According to effect 
size  See Effect Sizes above. 

 

Crossing survival curves 
 

Time of onset 1 to 9 months 

Corresponding parameters will be calibrated 
to yield survival functions that cross at time-
points compatible with ranges observed in 
the EPAR review (CONFIRMS (2022b), 
Table 7) 

Crossing hazard functions HR before crossing 1.5 to 3 

This is based on data from 3 studies 
included in CONFIRMS (2022b) - 
Supplement 1, where corresponding 
estimates were reported. 

 HR after crossing According to effect 
size (see above) See Effect Sizes above.  

Changing hazards following 
intercurrent event progression rate 10%/10%, 10%/20%, 

20%/20% 

Corresponding rate parameters will be 
calibrated to e.g. yield about 10% 
progressors in the treatment  and 20% in 
the control group (10%/20%).  Similar to the 
Teriflunomide example, below. 
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Assumption Parameters Ranges Implementation 

 hazard after 
progression mild, aggressive 

Corresponding rate parameters will be 
calibrated to reduce median survival times 
by 80% (mild) and 50% (aggressive) 
depending on the control group hazard. HR 
will be assumed to be 1 after progression. 
Settings (esp. mild) also covers treatment 
switching (see also Estimands below). 

Biomarker subgroups Subgroup prevalence 10% to 50% 

Prevalence of biomarker positive subjects 
will be set to match corresponding 
proportions observed in the EPAR Review 
(CONFIRMS (2022b) - Figure 3)  

 HR in subgroup relative 
to overall population 90%-70%  

Corresponding, parameters will be 
calibrated to yield hazard ratios for the 
biomarker positive group in the range of .9 
to .7 relative to the overall hazard ratio to 
match examples observed in the EPAR 
Review (CONFIRMS (2022b) - Figure 3) 

PIECEWISE	CONSTANT	HAZARDS	

Piecewise	constant	hazards	are	a	simple	yet	flexible	way	to	model	time	to	event	data	with	non-proportional	
hazards,	where	cumulative	hazards	and	survival	functions	can	be	expressed	explicitly.	For	each	subject	the	
hazard	to	experience	the	event	of	interest	is	assumed	to	be	constant	over	predefined	periods	of	time.	The	
hazard	may	differ	between	subjects	in	different	treatment	groups,	or	biomarker	subgroups.	Hazards	may	
change	to	a	different	fixed	value	at	a	given	time-point	(e.g.	at	the	time	of	treatment	effect	onset).	Assuming	
that		hazards	change	after	a	random	time	(which	is	itself	defined	via	a	piecewise	constant	hazard),	the	impact	
of	disease	progression	on	the	hazard	can	be	modelled.		With	mixtures	of	distributions	from	those	models,	
differential	treatment	effects	in	subgroups	and		treatment	switching	after	disease	progression	can	be	
modelled.	Derivation	of	the	formulas	and	algorithms	are	given	in	Ristl	et.	al	2020	who	also	provide	an	R	
implementation.		

IPD	with	parameters	calibrated	to	match	assumptions	provided	in	Table	1	above	will	be	modelled	as	follows:	

Delayed	onset	of	treatment	effect	will	be	modelled	by	a	constant	baseline	hazard	in	the	control	group	and	a	
piecewise	constant	hazard	in	the	treatment	group.	The	hazard	in	the	treatment	group	is	the	same	as	in	the	
control	group	in	the	first	time	interval	and	smaller	in	the	second	time	interval.		

Crossing	hazard	curves	will	be	modelled	by	a	constant	baseline	hazard	in	the	control	group	and	a	piecewise	
constant	hazard	in	the	treatment	group.	The	hazard	in	the	treatment	group	is	larger	than	the	hazard	in	the	
control	group	in	the	first	time	interval	and	smaller	than	the	hazard	in	the	control	group		in	the	second	time	
interval.		

Changing	hazards	following	an	intercurrent	event	(e.g.	treatment	discontinuation	or	switching)	will	be	
modelled	with	a	(potentially	different)	hazard	for	the	event	of	interest	in	both	arms	and	a	(potentially	
different)	hazard	for	time	to	intercurrent	event	in	both	arms.	The	hazard	for	the	event	of	interest	following	the	
intercurrent	event	is	the	same	in	both	groups	and	larger	than	the	hazard	before	the	event.	This	model	covers	
intercurrent	events	like	treatment	discontinuation	or	switching	(e.g.	caused	by	a	disease	progression).	See	
also	Section	Estimands	below	for	further	Details..	

Biomarker	subgroups	will	be	simulated	with	(potentially	different)	constant	hazards	in	biomarker	negative	
subjects	in	the	control	and	treatment	group	and	different	hazards	for	biomarker	positive	subjects,	again	
(potentially)	different	between	the	treatment	and	control	group.	Biomarker	status	will	be	sampled	for	each	
subject	from	a	binomial	distribution	using	frequencies	matching	the	range	of	prevalence	given	in	Table	1.	
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Additionally,	non-informative	study-withdrawal	will	be	modelled	using	the	same	constant	hazard	in	both	
treatment	groups.	In	addition,	due	to	different	options	concerning	recruitment	speed	and	sample	size,	
different	proportions	of	administrative	censoring	at	study	end	will	be	obtained	(see	also	subsection	Design	
below).	Note	that	since	either	event-time	is	independent	of	treatment	and	covariates	(e.g.	biomarker	
subgroup),	such	that	an	analysis	that	assumes	non-informative	censoring	will	be	appropriate	under	the	
resulting	independent	censoring.	Only	intercurrent	events	may	result	in	informative	censoring	which	will	be	
addressed	as	part	of	the	estimand	strategy	(see	Section	Estimand,	below).		

To	match	event-time	distributions	of	scenarios	under	NPH	to	the	reference	scenario	under	proportional	
hazards,	first	parameters	defining	the	latter	(i.e.	PH)	will	be	chosen	to	provide	a	given	power	to	the	log-rank	
test	with	the	particular	design	options	(e.g.	sample	size,	recruitment	speed).	In	a	second	step,	the	parameters	
of	the	hazard	functions	of	a	corresponding	scenario	under	NPH	will	be	chosen	to	yield	identical	median	
survival	times	in	each	treatment	group.		

In	summary,	the	simulated	individual	participant	data	will	consist	of	study	arm,	time	of	event	or	censoring	
status.	Additionally	time	of	intercurrent	event	and	biomarker	subgroup	will	be	simulated	for	the	respective	
scenarios.	Please	see	also	Section	Simulation	Parameters,	below,	for	an	exhaustive	list	of	the	resulting	
simulation	scenarios.	

Joint	Models	

“Semi-mechanistic”	models	from	the	pharmacometric	literature	(population	PKPD	models,	also	sometimes	
referred	to	as	joint	models)	will		be	used	to	combine	some	of	the	scenarios	described	above	to	simulate	
studies	with	individual	patient	data	and	different	sample	sizes.	In	the	context	of	PKPD	models,	parametric	
survival	models	with	time	varying	exposure	metrics	like	drug	exposure	(PK)	as	factors	in	the	hazard	can	often	
result	in	non-proportional	hazards	between	treatment	groups.	The	parametric	models	describe	base	hazard	
functions	that	may	change	over	time	(e.g.,	Weibull	or	Gompertz	hazard	functions)	and	may	use	other	
predictors	such	as	drug	PK	models,	other	disease	status	models		and/or	patient	covariates	that	may	change	
over	time	to	drive	changes	in	the	hazard	functions	(see	Holford	(2013)).	One	potential	case	study	be	used	as	a	
basis	for	simulation	of	trial	data	to	be	analysed	with	the	analysis	methods	developed	and	investigated	in	this	
work	could	be	the	use	of	Avelumab	in	metastatic	merkel	cell	and	advanced	urothelial	carcinoma,	which	has	
been	shown	to	have	time	changing	clearance	(Wilkins	et	al.	2019).	Population	PKPD	simulations	of	exposure-
safety	and	exposure-efficacy	(both	time-to-event	PD	endpoints)	of	Avelumab	may	result	in	non-proportional	
hazards	in	various	design	scenarios	(Novakovic	et	al.	2020).		

A	second	potential	case	study	for	simulation	uses	a	multistate	model,	similar	to	the	piecewise	constant	
hazards	approach	described	above,	to	describe	overall	survival	in	HER2-negative	breast	cancer	patients	
treated	with	docetaxel	(Krishnan	et	al.	(2021)).	However,	instead	of	piecewise	constant	hazards,	the	hazards	
are	generally	continuous	and	time	changing,	with	some	base	hazards	described	by	a	time-dependent	Weibull	
function,	and	some	hazards	having	time-changing	functions	based	on	other	disease	models	such	as	tumour	
size,	which	is	driven	by	a	PK	model	for	the	drug.		The	example	includes	disease	progression,	treatment	
switching	after	disease	progression,	and	differential	treatment	effects.		After	appropriate	choice	of	the		model	
parameters	crossing	hazards	and/or	late	hazard	separation	could	be	included.		

In	any	simulation	of	data,	such	as	from	the	case	studies	described	above,	the	original	models	will	be	used	as	
starting	points,	where	model	parameters	and	structures	will	be	adjusted	to	simulate	data	within	the	limits	
described	in	Table	1.	

BOOTSTRAP	FROM	IPD	

Additionally	data	will	be	generated	by	resampling	from	the	digitised	survival	curves	from	the	case	studies.	
Data	from	Kaplan	Meier	plots	will	be	digitised	interactively,	by	entering	the	numbers	at	risk	for	different	
timepoints	(where	available)	and	identifying	axes	and	survival	curves	in	plots	by	mouse	clicks.	Individual	
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patient	data	(event	times	and	censoring	status)	will	be	reconstructed	with	a	method	described	in	Guyot	et	al.	
(2012).	In	this	way	both	the	empirical	survival	and	censoring	distributions	from	the	actual	data	can	be	
estimated.		

From	this	reconstructed	individual	participant	data,	bootstrap	samples	can	be	drawn	to	estimate	standard	
errors	of	the	metrics	(e.g.	RMST,	rejection	probability	for	different	test	procedures,	…	).	This	is	equivalent	to	
sampling	from	the	estimated	empirical	distribution	function	(Efron	(1981))	and	computationally	more	
efficient	than	direct	sampling	e.g.	via	inverse	transformation.	Nevertheless,	bootstrapping	is	computationally	
less	involved.	Bias	will	be	estimated	in	terms	of	deviation	of	estimates	from	the	empirical	distribution	
function.	Type	I	error	rates	will	be	explored	by	sampling	from	the	control	group	only.	Because,	the	control	
group	survival	function	-	reconstructed	from	published	data	-	represents	only	one	particular	example	of	a	
specific	underlying	hazard	function	and	sampling	both	treatment	arms	from	the	same	treatment	group	would	
necessarily	imply	proportional	(even	equal)	hazards,	the	latter	may	be	of	interest	for	analysis	methods	that	
rely	on	parametric	assumptions	about	the	hazard	function.	

As	the	resulting	scenarios	refer	to	actual	trial	examples.	Relevant	estimands	will	be	defined	for	each	scenario	
(see	also	Section	Estimand).	Consequently,	only	methods	capable	of	estimating	the	corresponding	estimand	
will	be	considered	for	simulation.	

It	should	be	stressed	that	resulting	estimates	(e.g.	of	bias	and	variance)	are	with	respect	to	the	estimated	
empirical	distribution	functions	and	not	the	unknown	distribution	functions	from	which	the	corresponding	
trial	data	can	be	considered	realisations.	Nevertheless,	one	may	still	consider	the	estimated	distribution	
functions	relevant	instances	of	realistic	data	generating	processes	with	NPH.	

We	plan	to	include	the	following	case	studies	corresponding	to	different	sources	of	non-proportional	hazards:	

● PEMBROLIZUMAB,	EMEA/H/C/003820/II/0065	

Active	Substance:	Pembrolizumab	

Invented	Name:	Keytruda	

Procedure	Type:	Type	II	Variation	-	Extension	of	indication	to	include,	as	monotherapy	or	in	
combination	with	Chemotherapy,	first-line	treatment	of	recurrent	or	metastatic	head	and	neck	
squamous	cell	carcinoma	in	adults	

Trial:	Keynote-048:	Sample	Size	882	(301	pembro	mono,	281	pembro	combo)	

Primary	Analysis:	OS,	Stratified	log-rank	test,	CoxPH	

HR	Estimate	ITT	combo:	0.72,	(p=0.00025)	

NPH	issues:	delayed	treatment	effect,	differential	treatment	effect	(PD	L1	CPS)	

Model	Diagnostics:	Schoenfeld	Residuals,	log(-log(Survival)),	treatment*time	interaction	

Subgroup	effect	(combo)	HR:	CPS	>	1:	HR=0.65;	CPS	>	20:	HR=0.60	

● NIVOLUMAB	EMEA/H/C/003985/II/0080	

Active	Substance:	Nivolumab	

Invented	Name:	Opdivo	

Procedure	Type:	Type	II	Variation	-	Extension	of	Indication	for	Nivolumab	for	the	treatment	of	
Oesophageal	Squamous	Cell	Carcinoma	(OSCC)	
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Trial	ONO-4538-24:	Sample	Size	419	(210	in	treatment	group)	

Primary	Analysis:	OS,	Stratified	log-rank	test	

HR	Estimate	ITT:	0.77	(p=0.189)	

NPH	issues:	anticipated	delayed	treatment	effect	(immunotherapy	vs.	chemotherapy)	

Model	Diagnostics:	CoxPH	with	treatment	by	time	interaction,	Stratified	piecewise	CoxPH,	Kernel-
based	estimation	of	instantaneous	Hazard	

Piecewise	HR:	Mts	0-2:	2.48;	Mts:2-3:	1.03;	Mts:	3-4:	0.44;	Mts	4-5:	0.55;	Mts	5-6:	0.77	

	

● TERIFLUNOMIDE,	EMEA/H/C/002514/X/0031/G		

Active	Substance:	Teriflunomide	

Invented	Name:	Aubagio	

Procedure	Type:	Type	II	Variation	-	Extension	of	a	marketing	authorisation	for	Aubagio	to	add	a	new	
strength,	7	mg	film-coated	tablet,	for	use	in	paediatric	patients	from	10	years	of	age	and	older	with	
relapsing	remitting	multiple	sclerosis	(MS).	

Trial	TERIKIDS:	Sample	Size	166	(109	in	treatment	group)	

Primary	Analysis:	Time	to	first	relapse,	Stratified	log-rank	test	

HR	Estimate	ITT:	0.66	(p=0.2949)	

NPH	issues:	unclear,	appears	to	be	a	delayed	treatment	effect,	censoring	prior	to	rescue	

Model	Diagnostics:	visual	inspection	of	survival	curves	

Sensitivity	Analysis:	Alternative	estimand	considering	high	MRI	activity	(trigger	for	rescue)	as	event	

For	the	last	example,	the	EPAR	reports	KM	curves	from	which	IPD	event-	and	censoring	times	can	be	
reconstructed.	To	simulate	the	effect	of	progression	with	subsequent	treatment	switching	the	distribution	of	
subjects	with	progression	will	be	modelled	using	marginal	progression	rates	reported	in	the	EPAR,	as	well	as,	
KM	plots	from	an	analysis	of	time	to	first	clinical	relapse	or	high	MRI	activity	(event	to	trigger	rescue)	
published	in	the	Supplemental	material	of	Chitnis	et	al.	(2021).	

OPTIONS	

Options	refer	to	parameters	considered	to	be	under	control	of	the	experimenters.	We	consider	sample	size	
and	follow-up	to	be	options	under	the	control	of	the	experimenter.	However,	the	settings	will	be	chosen	in	
relation	to	specific	assumptions,	such	as	baseline	hazard,	censoring	distribution,	and	effect	size,	in	order	to	
obtain	study	designs	with	relevant	properties	in	terms	of	Type	I	error	and	Power.	In	Section	Estimand	we	
specify	the	different	estimand	options	that	will	be	considered	in	the	simulation	study.	Section	Study	Design	
then	provides	parameter	ranges	specifying	the	size,	duration	and	type	of	trial.	Section	Analysis	Methods	
specifies	the	analysis	methods	considered	in	this	study	and	for	which	the	operating	characteristics	under	
various	assumptions	and	design	options	will	be	evaluated.	Finally,	Section	Metrics	defines	the	metrics	that	will	
be	used	to	evaluate	the	performance	characteristics	of	the	different	analysis	methods	under	various	
assumptions	and	for	different	design	options.	
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ESTIMAND	

According	to	the	ICH	E9	(R1)	addendum	on	estimands	and	sensitivity	analysis	in	clinical	trials	to	the	guideline	
on	statistical	principles	for	clinical	trials	(EMA/CHMP/ICH/436221/2017)	trial	planning	should	proceed	in	
sequence	with	the	definition	of	a	suitable	estimand	immediately	following	the	specification	of	trial	objectives.	
As	we	consider	scenarios	with	and	without	different	types	of	intercurrent	events	different	estimand	strategies	
may	be	considered	relevant.	It	should	be	noted	that	the	relevance	of	a	specific	estimand	is	not	primarily	
determined	by	the	data	generating	process.	Specifically,	as	argued	above,	scenarios	simulating	the	occurrence	
of	an	intercurrent	event	can	be	considered	representative,	e.g.,		where	the	intercurrent	event	is	treatment	
switching	or	treatment	discontinuation.	

Regarding	the	estimand	attribute	treatment,	we	consider	treatments	that	induce	different	shapes	of	the	
hazard	curve.	Regarding	the	attribute	population,	we	consider	settings,	where	there	are	predictive	or	
prognostic	sub-populations.	To	address	intercurrent	events,		we	consider	different	estimand	strategies	in	
selected	specific	scenarios.	Especially,	we	consider	trials	where	a	composite	estimand	strategy	is	used	and	the	
intercurrent	event	(as	treatment	switching	due	to	progression)	is	considered	a	treatment	failure	and	the	
composite	endpoint	is	defined	as	the	time	to	event	(of	interest)	or	the	time	to	the	intercurrent	event,	
whichever	occurs	earlier.	Furthermore,	a	treatment	policy	strategy	will	be	considered,	where	the	time	to	
event	under	the	treatment	policy	(of	which	the	intercurrent	event,	as,	e.g.	a	treatment	switch,	is	part	of)	is	the	
estimands	of	interest.	By	addressing	both	estimands,	conclusions	can	be	drawn	for	either	setting	using	the	
same	simulated	data.		

In	addition,	depending	on	the	analysis	method,	different	population	summary	measures	will	be	considered	
(e.g.	hazard	ratio	for	CoxPH	model).	See	Table	3	for	a	complete	list	of	analyses	methods	and	corresponding	
summary	measures.	This	shall	enable	an	evaluation	of	estimand	strategies	targeting	different	population	
summaries.	

STUDY	DESIGN	

Study	design	options	mainly	comprise	the	number	of	subjects	to	be	included,	the	duration	during	which	
respective	subjects	are	recruited,	and	the	targeted	number	of	overall	events	at	which	time	the	study	is	
stopped.	In	addition	to	fixed	sample	designs,	we	consider	group-sequential	designs,	where	an	interim	analysis	
with	the	option	to	stop	the	study	for	success	is	performed	once	a	certain	number	of	events	have	been	
observed.	Consequently,	the	number(s)	of	events	at	which	the	interim	analyses	will	be	conducted,		as	well	as,	
the	alpha	spending	function	have	to	be	chosen.	

With	respect	to	recruitment	patterns,	we	assume	that	subjects	are		enrolled	at	uniformly	distributed	times	
over	a	given	timespan.	We	assume	the	studies	to	be	event	driven,	such	that	studies	end	when	a	pre-specified	
number	of	events	is	observed.	All	participants	who	did	not	have	an	event	up	to	this	time	are	censored.	In	other	
words:	the	study	ends	at	the	smallest	time	T	such	that	the	number	of	participants	whose	event	time	plus	time	
of	enrollment	is	smaller	than	T	is	larger	than	the	pre-specified	number	of	events.	All	patients	for	whom	the	
time	of	enrollment	plus	the	time	of	event	is	larger	than	T	are	censored.		

See	Table	2	for	a	complete	list	of	the	parameters	that	will	be	considered	in	the	simulation	study		for	each	
design	option.	
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Table	2:	Option	set	defining	the	different	clinical	trial	designs	considered	for	the	simulation	study.	

Option Parameters Ranges Comments 

Recruitment speed timespan of recruitment 18 months, 30 months 

Corresponds to the range 
of recruitment period for 

studies reported in  
CONFIRMS (2022b)  - 

Supplement 1 

Number of Patients number of subjects 
recruited  300, 500, 1000, 1500 

Range for small studies to 
large studies in broad 

indications, as observed in 
the EPAR Review - 

excluding the largest study 
in cardiovascular domain 

with ~13,000 subjects 
(CONFIRMS (2022b), 

Table 6)    

Number of events 
number of observed events 
after which the study is 
stopped 

depending on effect size 
and power scenario  

Interim Analyses 

time(s) of interim analyses  no IA, 50% of events  

ɑ spending function O’Brien-Fleming type alpha 
spending function  

ANALYSIS	METHODS	

With	respect	to	analysis	methods,	we	distinguish	between	reference	methods	(not	necessarily	suitable	under	
NPH)	and	alternative	methods	(taking	into	account	NPH)	to	be	evaluated	in	this	simulation	study.	In	addition	
we	distinguish	test	and	estimation	methods.	In	Table	3	we	list	the	different	procedures	that	will	be	used	to	
analyse	the	simulated	data-sets	and	for	which	operating	characteristics	will	be	evaluated.	The	table	provides	
names,	short	descriptions	and	intended	use	of	the	corresponding	procedures.	For	methods	that	permit	
estimation	of	a	clinically	meaningful	summary	measure	(e.g.	HR,	RMST)	the	respective	measure	is	provided.	
For	methods	primarily	focused	on	statistical	testing	based	on	statistics	with	no	clear	clinical	interpretation	
(e.g.	log-rank	test,	max-combo	test)	this	is	indicated,	as	well.		

While	some	methods	will	be	included	in	the	simulation	study	where	individual	patient	data	are	simulated	
according	to	distributional	assumptions	listed	above,	others	are	only	considered	for	reanalysis	of	data	in	case	
studies	that	will	be	developed	to	illustrate	the	main	conclusions	of	the	simulation	study.	The	corresponding	
methods	are	indicated	for	re-analysis	of	data	sets	in	the	table	below.	As	those	methods	may	not	target	a	single	
summary	measure	(e.g.	KM	Plots)	the	corresponding	column	is	left	empty.	
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Table	3:	List	of	analysis	methods	considered	for	the	simulation	study.	
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Method Description Use Summary 
Measure 

Implementation/calcu
lation 

Log-Rank test Current standard: hypothesis 
test 

Reference method - 
testing NA - testing only 

nph::logrank.test 

 

Difference in median survival 
time 

Current standard to 
contextualize effect size 

Reference method - 
estimation 

Difference in 
median survival 
times 

 

nph::nphparams 

Cox PH regression model 
Current standard: 95% CI for 
HR 

Reference method - 
estimation hazard ratio 

survival::coxph 

Weighted Logrank tests 

Gehan-Wilcoxon test, 
Fleming-Harrington family 
with weights (𝜌, 𝛾): (0,0), 
(0,1),(1,1),(1,0), modestly 
weighted log-rank test (Magirr 
(2019)) 

Alternative method - 
testing NA - testing only 

nph::logrank.test 

MaxCombo-Tests 
Maximum test combining the 
four Fleming-Harrington 
weighted tests, above 

Alternative method - 
testing NA - testing only 

nph::logrank.maxtest 

Milestone Survival 
Probabilities based on KM 

Milestones: 6 months, 12 
months 

Alternative method - 
estimation 

Milestone survival 
probabilities 

KM curves and 
corresponding 
confidence intervals 
at given timepoints 
survival::survfit 

Weighted Cox Regression 
(RMST) 

Time range: 6 months, 12 
months 

Alternative method - 
estimation 

restricted mean 
survival time 

survival::survfit 

Weighted Cox Regression 
(aHR) 

Time range: 6 months, 12 
months 

Alternative method - 
estimation 

Average hazard 
ratio 

coxphw::coxphw 

Piecewise exponential model Choice of time intervals: 3 
months, 12 months  

Alternative method - 
testing 

NA - for testing 
only (yields 
estimates for each 
interval) 

pch::pchreg 

 

Parametric survival model(s) 

Standard predefined 
pharmacometric models (see 
Holford (2013)), utilizing 
ensemble modeling (model 
averaging). 

Alternative method - 
estimation 

All - using 
parametric models 
the summary 
measure (and 
estimand) can be 
chosen as part of 
the model 
specification 

Using dedicated 
modelling software, 
e.g. NONMEM 

Kaplan-Meier (KM) Standard approach/well 
known 

For re-analysis of 
data sets 

NA - For 
illustration 
purposes in case 
studies 

 

Median survival Standard approach to 
describe groupwise survival 

For re-analysis of 
data sets 

NA - For 
illustration 
purposes in case 
studies 
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Method Description Use Summary 
Measure 

Implementation/calcu
lation 

Time varying coefficients 

treatment coefficient via 
interaction with basis 
functions; change point of 
treatment coefficient. E.g., 
Time-dependent Cox model, 

For re-analysis of 
data sets 

NA - For 
illustration 
purposes in case 
studies 

 

Short and long-term HR 

Yang-Prentice (2015): 
restricted shape of HR(t), 
easier to estimate and 
interpret than time varying 
treatment coefficient. 

For re-analysis of 
data sets 

NA - For 
illustration 
purposes in case 
studies 

 

Aalen additive hazards 
model 

Martinussen & Pipper, (2014) 
estimates the Causal Odds of 
Concordance which is 
equivalent to the aHR in 
RCTs without covariate 
adjustment 

For re-analysis of 
data sets 

Causal Odds of 
Concordance  

 

METRICS	

The	metrics	to	evaluate	the	performance	of	different	methods	will	be:	

• Probability	to	reject	the	null	hypothesis	(type	I	error	rate,	power)	
• Bias	and	MSE	(mean	squared	error)	for	the	estimation	of	parameters	of	interest.		
• When	confidence	intervals	are	available,	coverage	probabilities	and	half-width	of	confidence	intervals	

for	parameter	of	interest	

Specifically,	for	statistical	hypothesis	tests	the	probability	of	rejection	in	each	scenario	and	parameter	set	will	
be	the	primary	metric	of	evaluation.	We	distinguish	between	Type	I	error	rates	if	the	scenario	and	parameters	
belong	to	the	null	hypothesis	and	power	if	the	scenario	and	parameters	belong	to	the	alternative.	In	case	
methods	indicated	for	estimation	(see	Table	3,	above)	provide	statistical	hypothesis	tests	(e.g.	based	on	
confidence	intervals)	corresponding	rejection	probabilities	will	be	provided	as	well.		In	addition,	for	scenarios	
evaluating	method	performance	in	group	sequential	designs,	the	proportion	of	early	rejections	and	the	
average	sample	size	will	be	reported.	

For	estimators	the	bias	and	mean	squared	error	will	represent	the	primary	metrics	of	evaluation.	In	addition,	
for	methods	that	provide	confidence	intervals	for	the	parameters,	the	width	and	coverage	probabilities	of	
corresponding	intervals	will	be	reported.	

In	general,	for	dichotomous	outcomes	(e.g.	test	decisions)	the	absolute	and	relative	frequencies	of	replications	
will	be	reported	along	with	confidence	intervals	as	a	measure	of	(simulation)	uncertainty.	For	continuous	
metrics,	Monte	Carlo	standard	errors	will	be	reported.	

EVALUATION	METHODS	

Methods	will	be	evaluated	by	generating	data	according	to	the	parametric	scenarios	or	resampling	from	
reconstructed	data	from	the	case	studies	and	then	applying	each	method.	The	number	of	replications	will	be	
determined	by	the	Monte	Carlo	standard	error	of	the	rejection	probability	of	a	test,	assuming	the	worst	case	of	
50%	coverage	probability.	For	example	requiring	a	standard	error	of	1	percentage	point	requires	2500	
replications,	according	to:	

𝑛!"# = $.&⋅()*$.&)
$.$)!

= 2500.	
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For	the	evaluation	of	Type	I	error	rates	close	to	0.025	one-sided,	2500	replicates	would	provide	standard	
errors	around	0.003.	Consequently,	estimated	Type	I	error	rates	above	0.03	(i.e.	~0.025 + 1.96 ⋅ 0.003)	would	
give	strong	indication	for	an	inflation	of	the	Type	I	error	rate.	Consequently,	we	plan	to	simulate	at	least	2500	
replications	per	scenario.	

The	performance	of	the	methods	with	respect	to	their	target	estimand	will	be	reported	in	tables	and	
graphically.	For	all	scenarios	and	options	each	metric	will	be	reported.	Monte	Carlo	standard	errors	will	be	
reported	to	account	for	uncertainty	due	to	a	finite	number	of	simulations	(compare	Table	6.	from	Morris	et	al.	
(2019)).	

The	results	will	be	presented	as	tables	and	figures.		

The	tables	will	be	structured	so	that	the	scenarios	correspond	to	lines	and	methods	or	options	will	correspond	
to	columns.	Different	performance	metrics	can	be	presented	in	different	tables	or	in	rows	in	each	table	cell.	
For	example,	in	the	case	of	estimation	one	table	for	bias	and	mean	squared	error	and	a	second	table	for	length	
and	coverage	probability	of	confidence	intervals.	

Bivariate	Plots	will	include	one	line	per	method	and	one	parameter	of	the	scenario	on	the	x-axis	and	the	value	
of	one	performance	measure	on	the	y-axis.	Other	parameter	values	will	be	kept	fixed	or	varied	over	multiple	
plots	(facets).		

Figures	for	tests	will	contain	the	rejection	probability	on	the	y-axis.	Parameter	values	that	are	in	the	null-
hypothesis	will	be	highlighted,	nominal	alpha	level	will	be	added	as	a	horizontal	line.		

Additionally	figures	for	each	summary	statistic	will	be	created	that	show	the	true	value	of	each	summary	
statistic	and	the	value	of	each	method	targeting	this	summary	statistic.	Presentation	of	the	different	scenarios	
will	be	the	same	as	in	the	figures	of	performance	measures.	

The	complete	results	will	be	provided	as	listings	and	figures	in	pdf	format,	as	well	as,	in	a	machine	readable	
digital	format	(csv,	rda)	that	can	be	filtered,	processed	and	visualized	e.g.	using	functionality	of	our	simulation	
framework	package	or	other	third-party	software	(e.g.	generic	shiny	apps	to	explore	simulation	results).	In	
addition,	we	will	create	a	summary	report	presenting	the	most	relevant	outcomes	of	the	simulation	study	
relying	mostly	on	figures,	which	are	capable	of	presenting	and	contrasting	the	results	of	a	large	number	of	
settings	within	the	broader	assumption	sets	in	a	single	plot.	For	example,	for	the	assumption	set	relating	to	
delayed	onset	of	treatment	effect,	the	Type	I	error	rate	of	corresponding	methods	could	be	shown	on	the	y-
axis,	ranging	the	time	of	onset	on	the	x-axis	in	a	plot	matrix	of	facets	with	effect	size	and	amount	of	non-
informative	censoring	in	rows	and	columns.	Results	for	different	baseline	hazards	could	then	be	shown	only	
for	a	specific	setting	to	illustrate	its	impact	on	the	operating	characteristics,	or	if	little	impact	is	observed	this	
can	be	explained	in	the	text.	However,	in	case	it	is	found	that	the	baseline	hazard	has	a	large	impact,	it	may	be	
used	as	a	dimension	in	the	figure	with	another	less	impactful	parameter	only	presented	for	illustration.	The	
final	decision	on	which	results	to	show	as	part	of	a	compact	simulation	report,	will	depend	on	the	results	and	
cannot	be	foreseen	in	full	detail	at	this	time.	

Software	

The	Simulations	will	be	performed	in	R	(R	Core	Team	(2022))	making	use	of	the	SimDesign	package	
(Chalmers	and	Adkins	(2020))	to	initialise	random	number	generators,	save	random	seeds	and	dispatch	the	
computations	and	collect	the	results.	

Functions	to	generate	the	data,	apply	the	reviewed	methods	and	aggregate	the	results	will	be	written	by	the	
consortium.	For	data	generation	of	piecewise	constant	hazards	and	hazards	changing	after	a	random	time	the	
nph	package	(Ristl	et	al.	(2021))	will	be	used.	Other	packages	might	be	used	for	additional	data	generating	
models	if	necessary.	The	different	scenarios	will	be	implemented	in	functions	calling	the	data	generating	
functions	from	other	packages	with	the	respective	parameters	or	own	code.		
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Additionally	functions	to	draw	bootstrap	samples	from	available	or	reconstructed	individual	patient	data	will	
be	implemented.	For	the	Joint	Models	the	data	will	be	generated	with	a	different	software	package.	The	
SimDesign	package	provides	functionality	to	write	import	functions	to	read	in	those	datasets	instead	of	
generating	datasets	in	R.		In	case	externally	generated	data	need	to	be	enriched	with	additional	features	(e.g.	
recruitment	time,	study-withdrawal	time)	corresponding	functionality	will	be	implemented	with	the	import	
functions.	

Implementations	of	the	data	analysis	methods	applied	to	the	generated	data	will	be	used	from	different	
packages	where	they	are	already	implemented.	Wrapper	functions	compatible	with	the	SimDesign	
framework	will	be	provided.	

All	R	functions	and	documentation	will	be	published	in	an	R	package,	the	code	to	reproduce	the	simulation	
study	and	tables	and	graphs	from	the	report	will	be	published	as	one	or	more	vignettes	to	the	R	package.	Code	
used	to	generate	data	from	other	scenarios	will	also	be	made	available.	

Simulation	Parameters	

The	simulations	will	explore	all	options	for	the	study	design	for	all	parameters	of	the	different	scenarios.	The	
parameters	for	the	options	are	given	in	Table	4,	the	parameters	for	the	scenarios	are	given	in	Table	5.	

This	will	give	16	options	for	4	assumption	sets	with	144,	288,	54,	324	combinations	of	parameters	each	
yielding	12960	simulations	in	total.	Each	simulation	will	be	run	2500	times,	10	methods	described	in	Table	3	
will	be	applied	to	each	simulated	dataset.	

Table	4:	List	of	parameters	for	options.	

Option Parameters Degrees of freedom 

recruitment speed 18, 30 months 2 

number of patients 300, 500, 1000, 1500 4 

interim analysis 
none, O’Brien Fleming type boundaries 
after 50% of events 2 

	

Table	5:	List	of	parameters	for	assumptions.	

	

Assumption set Parameter Degrees of freedom 

Delayed onset of treatment 

 

control arm hazard 3 

non informative censoring 
3 
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Assumption set Parameter Degrees of freedom 

time of onset 4 

effect size 4 

Crossing hazard curves 

  

control arm hazard 3 

non informative censoring 
3 

time of onset 4 

HR before crossing 2 

effect size 4 

Changing hazards after intercurrent 
event 

 

control arm hazard 3 

non informative censoring 
3 

progression rate 3 

hazard after progression 2 

 Biomarker subgroup control arm hazard 3 

 non informative censoring 
3 

 

prevalence 3 



17	

	

Assumption set Parameter Degrees of freedom 

 
effect size in overall population 4 

 HR in subgroup relative to overall 
population 3 
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