Statistical methods for time-to-event endpoints with non-proportional hazards in clinical trials pivotal for benefit risk decision making

First published: 29/03/2022 Last updated: 26/11/2025





## Administrative details

| EU PAS number    |
|------------------|
| EUPAS46420       |
| Study ID         |
|                  |
| 49976            |
| DARWIN EU® study |
| No               |
| Study countries  |
| Austria          |
| Germany          |
| Sweden           |

#### Study description

While well-established methods for time-to-event data are available when the proportional hazards assumption holds, there is no consensus on the best approach under non-proportional hazards. However, a wide range of parametric and non-parametric methods for testing and estimation in this scenario have been proposed. The main objective of this work is to provide recommendations on the statistical analysis and reporting of clinical trials where non proportional hazards are expected, e.g. when treatments have a delayed onset of the treatment effect, if efficacy of the treatment wanes over time, or if the treatment effect is not homogeneous in the population. To this end, we will first perform a literature review on the available methods, review the availability of statistical software that implement these methods, and review scientific advice and marketing authorization procedures to identify relevant scenarios where non-proportional hazards occur. Based on this review, a set of methods will be selected for further assessment. Furthermore, their theoretical properties will be reviewed and operating characteristics will be investigated in an extensive simulation study under a wide range of scenarios considering different trial designs, recruitment and censoring patterns as well as different shapes of the hazard functions.

#### **Study status**

**Finalised** 

### Research institutions and networks

### Institutions

Medical University of Vienna

| Austria                                                                        |
|--------------------------------------------------------------------------------|
| First published: 01/02/2024                                                    |
| <b>Last updated:</b> 26/02/2024                                                |
| Institution Educational Institution Hospital/Clinic/Other health care facility |
|                                                                                |
|                                                                                |
| University Medical Centre Göttingen (UMG)                                      |
| Germany                                                                        |
| First published: 26/11/2025                                                    |
| <b>Last updated:</b> 26/11/2025                                                |
| Institution Hospital/Clinic/Other health care facility                         |

Uppsala Universitet Von Kraemers Allé 4, 751 05 Uppsala, Sweden, Österreichische Agentur für Gesundheit und Ernährungssicherheit GmbH Spargelfeldstraße 191, 1220 Wien, Austria

## Contact details

**Study institution contact** 

Martin Posch martin.posch@meduniwien.ac.at

Study contact

martin.posch@meduniwien.ac.at

### **Primary lead investigator**

Martin Posch

**Primary lead investigator** 

# Study timelines

#### Date when funding contract was signed

Planned: 10/12/2021

Actual: 10/12/2021

#### Study start date

Planned: 24/03/2022

Actual: 24/03/2022

#### **Date of final study report**

Planned: 31/01/2023

Actual: 26/06/2023

# Sources of funding

EMA

# Study protocol

2022-10-14 CONFIRMS Simulation Study Protocol rev2.pdf (267.37 KB)

# Regulatory



Yes

### Is the study required by a Risk Management Plan (RMP)?

Not applicable

# Methodological aspects

# Study type

# Study type list

#### **Study topic:**

Other

### Study topic, other:

Disease/Epidemiology study

### Study type:

Not applicable

### If 'other', further details on the scope of the study

Assessment of statistical methods

### Main study objective:

(1) To identify available statistical methods for the analysis of time-to-event endpoints in the presence on non-proportional hazards. (2) to assess the statistical properties of these methods (3) to assess the regulatory acceptability of these methods for clinical trials that are pivotal for drug development and

# Population studied

#### Short description of the study population

N/A

#### Age groups

- Preterm newborn infants (0 27 days)
- Term newborn infants (0 27 days)
- Infants and toddlers (28 days 23 months)
- Children (2 to < 12 years)
- Adolescents (12 to < 18 years)</li>
- Adults (18 to < 46 years)
- Adults (46 to < 65 years)
- Adults (65 to < 75 years)
- Adults (75 to < 85 years)
- Adults (85 years and over)

#### **Estimated number of subjects**

0

# Study design details

#### **Data analysis plan**

Not applicable

## **Documents**

#### **Study results**

Summary.pdf (37.51 KB) Summary V1.1.pdf (43.63 KB)

#### Study, other information

Literature Review Rev. 2.pdf (1.49 MB) Summary NPH.pdf (43.63 KB)

#### **Study publications**

Bardo M, Huber C, Benda N, Brugger J, Fellinger T, Galaune V, Heinz J, Heinzl H...

F Klinglmüller, T Fellinger, F König, T Friede, AC Hooker, H Heinzl, M Mittlböc...

## Data management

## **ENCePP Seal**

The use of the ENCePP Seal has been discontinued since February 2025. The ENCePP Seal fields are retained in the display mode for transparency but are no longer maintained.

### Data sources

Data sources (types)

Other

Data sources (types), other

Literature Review: MEDLINE, EMBASE. Review of EMA EPARS: paediatricdata.eu. Review of EMA Scientific Advice letters: AGES internal database. Simulation Study

# Use of a Common Data Model (CDM)

#### **CDM** mapping

No

# Data quality specifications

#### **Check conformance**

Unknown

### **Check completeness**

Unknown

### **Check stability**

Unknown

### **Check logical consistency**

Unknown

## Data characterisation

#### **Data characterisation conducted**

No