Risk-benefit and costs of unicompartmental (compared to total) knee replacement for patients with multiple co-morbidities: a non-randomised study, and different novel approaches to minimize confounding (UTMOST)

**First published:** 16/02/2017 **Last updated:** 13/02/2019





### Administrative details

**EU PAS number** 

**EUPAS17435** 

Study ID

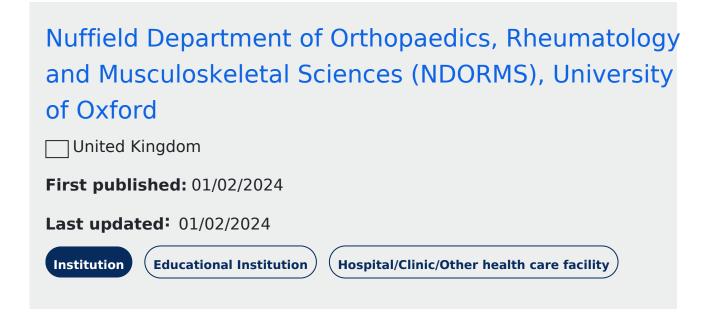
28022

**DARWIN EU® study** 

No

## Study countries United Kingdom

#### **Study description**


Although a RCT (TOPKAT) is ongoing to compare unicompartemental (UKR) and total knee replacement (TKR), limited follow-up and restrictive eligibility criteria will limit external validity to a large number of patients with multiple comorbidities. Our aims are:1.-To validate a number of analytical methods to minimise confounding: we will replicate TOPKAT by analysing the association between UKR (compared to TKR) and post-operative patient reported outcomes (PROMs) amongst participants in the National Joint Registry for England and Wales(NJR) eligible for TOPKAT (ASA grade <3) using different methods, and then test for a difference between the obtained estimates and TOPKAT.-To study the benefits (PROMs), risks (revision, complications), mortality, costs and cost-effectiveness of UKR (vs TKR) amongst NJR participants not eligible for TOPKAT. Methods previously validated will be applied for this second Aim. We will conduct a cohort analysis using routinely collected data from the NJR linked to hospital admission records (HES) and the National PROMs Database.-Primary outcome: post-operative Oxford Knee Score (PROMs).-Secondary outcomes: one and 5-year risks (revision surgery, systemic infection, wound infection, cardiovascular disease, and venous thromboembolism), mortality, healthrelated quality of life (EQ-5D), hospital costs (as in HES).-Power: Based on published data, >720 UKR and 8,400 TKR recipients in the co-morbidity cohort will have linked PROMs. With an expected standard deviation of 8, power will be 90% to detect a minimally clinically important difference of 2+ points in Oxford Knee Score.-Statistics: Linear regression will be used to study the association between surgery (UKR vs TKR) and post-operative PROMs. Survival models will be fitted to study time-to-event (one model for each of the proposed secondary outcomes) according to UKR/TKR. Generalized linear models (GLMs) will be used to study costs and their relationship with surgery type.

#### **Study status**

Ongoing

### Research institutions and networks

### Institutions



Centre for Statistics in Medicine

### Contact details

### Study institution contact

Daniel Prieto-Alhambra daniel.prietoalhambra@ndorms.ox.ac.uk

Study contact

daniel.prietoal hambra@ndorms.ox.ac.uk

#### **Primary lead investigator**

### Daniel Prieto-Alhambra

**Primary lead investigator** 

### Study timelines

### Date when funding contract was signed

Planned: 31/03/2017 Actual: 12/01/2017

#### Study start date

Planned: 02/10/2017 Actual: 09/12/2017

#### Data analysis start date

Planned: 02/04/2018 Actual: 01/10/2018

### **Date of final study report**

Planned: 28/06/2019

### Sources of funding

Other

### More details on funding

NIHR HTA, University of Oxford

### Regulatory

#### Was the study required by a regulatory body?

No

#### Is the study required by a Risk Management Plan (RMP)?

Not applicable

### Methodological aspects

### Study type

### Study type list

#### Study type:

Non-interventional study

### Scope of the study:

Assessment of risk minimisation measure implementation or effectiveness Effectiveness study (incl. comparative)

Other

### If 'other', further details on the scope of the study

Methodology, Health Economics

### Main study objective:

Our overarching aims are:1. To study the validity of different epidemiology analytical methods -used in drug and vaccine studies to minimise confounding-for the assessment of alternative surgical procedures. 2. To apply the identified methods to the analysis of risks, benefits, costs and cost-effectiveness of surgical alternatives for knee replacement for patients with multiple

comorbidities.

### Study Design

#### Non-interventional study design

Cohort

### Study drug and medical condition

#### Medical condition to be studied

Knee arthroplasty

Knee operation

### Population studied

#### **Age groups**

Adults (18 to < 46 years)

Adults (46 to < 65 years)

Adults (65 to < 75 years)

Adults (75 to < 85 years)

Adults (85 years and over)

### **Estimated number of subjects**

380000

### Study design details

#### **Outcomes**

Post-operative Oxford Knee Score (PROMs). One and 5-year risks (revision surgery, systemic infection, wound infection, cardiovascular disease, and venous thromboembolism), mortality, health-related quality of life (EQ-5D), NHS hospital costs (as identified in HES).

#### Data analysis plan

In the first stage, different methods will be tested to evaluate the association between knee replacement type and both primary and secondary outcomes in the comparison cohort: 1.Propensity score (PS) methods, 2.High-dimensional PS, and 3.Instrumental variable analyses. A chi square test for heterogeneity will be used to formally test for differences between the estimates obtained in TOPKAT compared to the different observational analyses. In a second stage, those methods able to obtain results equivalent (i.e. not significantly different) to the TOPKAT post-operative PROMs findings will be applied to the analysis of the association between UKR (compared to TKR) and all study outcomes (risk/s, revision, benefits, mortality, costs and cost-effectiveness) in the co-morbidity cohort.

### Data management

### Data sources

### Data sources (types)

Administrative healthcare records (e.g., claims)

Other

# Data sources (types), other Exposure registry Use of a Common Data Model (CDM) **CDM** mapping No Data quality specifications **Check conformance** Unknown **Check completeness** Unknown **Check stability** Unknown **Check logical consistency** Unknown Data characterisation

**Data characterisation conducted** 

No